Nuprl Lemma : list_decomp_reverse
∀[T:Type]. ∀L:T List. ∃x:T. ∃L':T List. (L = (L' @ [x]) ∈ (T List)) supposing 0 < ||L||
Proof
Definitions occuring in Statement :
length: ||as||
,
append: as @ bs
,
cons: [a / b]
,
nil: []
,
list: T List
,
less_than: a < b
,
uimplies: b supposing a
,
uall: ∀[x:A]. B[x]
,
all: ∀x:A. B[x]
,
exists: ∃x:A. B[x]
,
natural_number: $n
,
universe: Type
,
equal: s = t ∈ T
Definitions unfolded in proof :
uall: ∀[x:A]. B[x]
,
all: ∀x:A. B[x]
,
member: t ∈ T
,
so_lambda: λ2x.t[x]
,
uimplies: b supposing a
,
prop: ℙ
,
so_apply: x[s]
,
implies: P
⇒ Q
,
less_than: a < b
,
squash: ↓T
,
less_than': less_than'(a;b)
,
false: False
,
and: P ∧ Q
,
top: Top
,
or: P ∨ Q
,
cons: [a / b]
,
exists: ∃x:A. B[x]
,
append: as @ bs
,
so_lambda: so_lambda(x,y,z.t[x; y; z])
,
so_apply: x[s1;s2;s3]
,
ge: i ≥ j
,
decidable: Dec(P)
,
le: A ≤ B
,
not: ¬A
,
satisfiable_int_formula: satisfiable_int_formula(fmla)
,
true: True
Lemmas referenced :
list_induction,
isect_wf,
less_than_wf,
length_wf,
exists_wf,
list_wf,
equal_wf,
append_wf,
cons_wf,
nil_wf,
length_of_nil_lemma,
member-less_than,
length_of_cons_lemma,
list-cases,
product_subtype_list,
list_ind_nil_lemma,
non_neg_length,
decidable__lt,
full-omega-unsat,
intformand_wf,
intformnot_wf,
intformless_wf,
itermConstant_wf,
itermAdd_wf,
itermVar_wf,
intformle_wf,
int_formula_prop_and_lemma,
int_formula_prop_not_lemma,
int_formula_prop_less_lemma,
int_term_value_constant_lemma,
int_term_value_add_lemma,
int_term_value_var_lemma,
int_formula_prop_le_lemma,
int_formula_prop_wf,
list_ind_cons_lemma,
squash_wf,
true_wf
Rules used in proof :
sqequalSubstitution,
sqequalTransitivity,
computationStep,
sqequalReflexivity,
Error :isect_memberFormation_alt,
lambdaFormation,
cut,
thin,
introduction,
extract_by_obid,
sqequalHypSubstitution,
isectElimination,
hypothesisEquality,
sqequalRule,
lambdaEquality,
natural_numberEquality,
hypothesis,
independent_functionElimination,
imageElimination,
productElimination,
voidElimination,
because_Cache,
independent_isectElimination,
rename,
Error :universeIsType,
dependent_functionElimination,
isect_memberEquality,
voidEquality,
addEquality,
universeEquality,
unionElimination,
promote_hyp,
hypothesis_subsumption,
dependent_pairFormation,
approximateComputation,
int_eqEquality,
intEquality,
independent_pairFormation,
applyEquality,
equalityTransitivity,
equalitySymmetry,
imageMemberEquality,
baseClosed
Latex:
\mforall{}[T:Type]. \mforall{}L:T List. \mexists{}x:T. \mexists{}L':T List. (L = (L' @ [x])) supposing 0 < ||L||
Date html generated:
2019_06_20-PM-01_45_27
Last ObjectModification:
2018_09_26-PM-02_54_49
Theory : list_1
Home
Index