Nuprl Lemma : not-assert-bl-exists
∀[T:Type]. ∀[L:T List]. ∀[P:{x:T| (x ∈ L)} ⟶ 𝔹]. uiff(¬↑(∃x∈L.P[x])_b;(∀x∈L.¬↑P[x]))
Proof
Definitions occuring in Statement :
bl-exists: (∃x∈L.P[x])_b
,
l_all: (∀x∈L.P[x])
,
l_member: (x ∈ l)
,
list: T List
,
assert: ↑b
,
bool: 𝔹
,
uiff: uiff(P;Q)
,
uall: ∀[x:A]. B[x]
,
so_apply: x[s]
,
not: ¬A
,
set: {x:A| B[x]}
,
function: x:A ⟶ B[x]
,
universe: Type
Definitions unfolded in proof :
uall: ∀[x:A]. B[x]
,
member: t ∈ T
,
uiff: uiff(P;Q)
,
and: P ∧ Q
,
uimplies: b supposing a
,
l_all: (∀x∈L.P[x])
,
all: ∀x:A. B[x]
,
not: ¬A
,
implies: P
⇒ Q
,
false: False
,
so_apply: x[s]
,
prop: ℙ
,
guard: {T}
,
int_seg: {i..j-}
,
lelt: i ≤ j < k
,
decidable: Dec(P)
,
or: P ∨ Q
,
satisfiable_int_formula: satisfiable_int_formula(fmla)
,
exists: ∃x:A. B[x]
,
top: Top
,
less_than: a < b
,
squash: ↓T
,
so_lambda: λ2x.t[x]
,
iff: P
⇐⇒ Q
,
rev_implies: P
⇐ Q
,
l_exists: (∃x∈L. P[x])
Lemmas referenced :
assert-bl-exists,
list_wf,
bool_wf,
l_all_wf,
bl-exists_wf,
not_wf,
length_wf,
int_seg_wf,
int_formula_prop_less_lemma,
intformless_wf,
decidable__lt,
int_formula_prop_wf,
int_term_value_var_lemma,
int_term_value_constant_lemma,
int_formula_prop_le_lemma,
int_formula_prop_not_lemma,
int_formula_prop_and_lemma,
itermVar_wf,
itermConstant_wf,
intformle_wf,
intformnot_wf,
intformand_wf,
satisfiable-full-omega-tt,
decidable__le,
int_seg_properties,
list-subtype,
l_member_wf,
select_wf,
assert_wf
Rules used in proof :
sqequalSubstitution,
sqequalTransitivity,
computationStep,
sqequalReflexivity,
isect_memberFormation,
introduction,
cut,
independent_pairFormation,
sqequalRule,
sqequalHypSubstitution,
lambdaEquality,
dependent_functionElimination,
thin,
hypothesisEquality,
because_Cache,
lemma_by_obid,
isectElimination,
applyEquality,
setEquality,
hypothesis,
equalityTransitivity,
equalitySymmetry,
independent_isectElimination,
setElimination,
rename,
productElimination,
unionElimination,
natural_numberEquality,
dependent_pairFormation,
int_eqEquality,
intEquality,
isect_memberEquality,
voidElimination,
voidEquality,
computeAll,
imageElimination,
lambdaFormation,
independent_functionElimination,
independent_pairEquality,
functionEquality,
universeEquality
Latex:
\mforall{}[T:Type]. \mforall{}[L:T List]. \mforall{}[P:\{x:T| (x \mmember{} L)\} {}\mrightarrow{} \mBbbB{}]. uiff(\mneg{}\muparrow{}(\mexists{}x\mmember{}L.P[x])\_b;(\mforall{}x\mmember{}L.\mneg{}\muparrow{}P[x]))
Date html generated:
2016_05_14-PM-02_11_02
Last ObjectModification:
2016_01_15-AM-08_00_03
Theory : list_1
Home
Index