Nuprl Lemma : pairwise-iff
∀[T:Type]
  ∀L:T List
    ∀[P:T ⟶ T ⟶ ℙ']
      ((∀x,y:T.  (P[x;y] ⇒ P[y;x]))
      ⇒ (∀x:T. P[x;x])
      ⇒ ((∀x,y∈L.  P[x;y]) ⇐⇒ ∀x,y:T.  ((x ∈ L) ⇒ (y ∈ L) ⇒ P[x;y])))
Proof
Definitions occuring in Statement : 
pairwise: (∀x,y∈L.  P[x; y]), 
l_member: (x ∈ l), 
list: T List, 
uall: ∀[x:A]. B[x], 
prop: ℙ, 
so_apply: x[s1;s2], 
all: ∀x:A. B[x], 
iff: P ⇐⇒ Q, 
implies: P ⇒ Q, 
function: x:A ⟶ B[x], 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
iff: P ⇐⇒ Q, 
and: P ∧ Q, 
member: t ∈ T, 
prop: ℙ, 
so_lambda: λ2x y.t[x; y], 
so_apply: x[s1;s2], 
rev_implies: P ⇐ Q, 
subtype_rel: A ⊆r B, 
or: P ∨ Q, 
uimplies: b supposing a, 
guard: {T}, 
pairwise: (∀x,y∈L.  P[x; y]), 
int_seg: {i..j-}, 
lelt: i ≤ j < k, 
le: A ≤ B, 
less_than: a < b, 
squash: ↓T, 
decidable: Dec(P), 
not: ¬A, 
satisfiable_int_formula: satisfiable_int_formula(fmla), 
exists: ∃x:A. B[x], 
false: False, 
top: Top
Lemmas referenced : 
l_member_wf, 
pairwise_wf2, 
subtype_rel_self, 
list_wf, 
istype-universe, 
pairwise-implies, 
iff_weakening_equal, 
select_wf, 
int_seg_properties, 
decidable__le, 
full-omega-unsat, 
intformand_wf, 
intformnot_wf, 
intformle_wf, 
itermConstant_wf, 
itermVar_wf, 
istype-int, 
int_formula_prop_and_lemma, 
istype-void, 
int_formula_prop_not_lemma, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_term_value_var_lemma, 
int_formula_prop_wf, 
decidable__lt, 
length_wf, 
intformless_wf, 
int_formula_prop_less_lemma, 
select_member, 
istype-le, 
istype-less_than, 
int_seg_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
lambdaFormation_alt, 
independent_pairFormation, 
universeIsType, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
inhabitedIsType, 
instantiate, 
cumulativity, 
sqequalRule, 
lambdaEquality_alt, 
applyEquality, 
functionIsType, 
because_Cache, 
universeEquality, 
dependent_functionElimination, 
independent_functionElimination, 
unionElimination, 
functionExtensionality_alt, 
equalitySymmetry, 
dependent_set_memberEquality_alt, 
equalityTransitivity, 
productIsType, 
equalityIstype, 
applyLambdaEquality, 
setElimination, 
rename, 
productElimination, 
independent_isectElimination, 
imageElimination, 
natural_numberEquality, 
approximateComputation, 
dependent_pairFormation_alt, 
int_eqEquality, 
isect_memberEquality_alt, 
voidElimination
Latex:
\mforall{}[T:Type]
    \mforall{}L:T  List
        \mforall{}[P:T  {}\mrightarrow{}  T  {}\mrightarrow{}  \mBbbP{}']
            ((\mforall{}x,y:T.    (P[x;y]  {}\mRightarrow{}  P[y;x]))
            {}\mRightarrow{}  (\mforall{}x:T.  P[x;x])
            {}\mRightarrow{}  ((\mforall{}x,y\mmember{}L.    P[x;y])  \mLeftarrow{}{}\mRightarrow{}  \mforall{}x,y:T.    ((x  \mmember{}  L)  {}\mRightarrow{}  (y  \mmember{}  L)  {}\mRightarrow{}  P[x;y])))
Date html generated:
2020_05_19-PM-09_43_18
Last ObjectModification:
2019_10_18-PM-00_40_20
Theory : list_1
Home
Index