Nuprl Lemma : rotate-inverse1

[n:ℕ+]. ((rot(n) rot(n)^n 1) x.x) ∈ (ℕn ⟶ ℕn))


Proof




Definitions occuring in Statement :  rotate: rot(n) fun_exp: f^n compose: g int_seg: {i..j-} nat_plus: + uall: [x:A]. B[x] lambda: λx.A[x] function: x:A ⟶ B[x] subtract: m natural_number: $n equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] compose: g member: t ∈ T top: Top nat: nat_plus: + guard: {T} int_seg: {i..j-} lelt: i ≤ j < k and: P ∧ Q all: x:A. B[x] decidable: Dec(P) or: P ∨ Q uimplies: supposing a satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False implies:  Q not: ¬A prop: true: True squash: T subtype_rel: A ⊆B iff: ⇐⇒ Q rev_implies:  Q
Lemmas referenced :  fun_exp_add1 subtract_wf int_seg_properties nat_plus_properties decidable__le satisfiable-full-omega-tt intformand_wf intformnot_wf intformle_wf itermConstant_wf itermSubtract_wf itermVar_wf intformless_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_subtract_lemma int_term_value_var_lemma int_formula_prop_less_lemma int_formula_prop_wf le_wf subtract-add-cancel int_seg_wf nat_plus_wf equal_wf rotate-order iff_weakening_equal
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation cut functionExtensionality sqequalRule introduction extract_by_obid sqequalHypSubstitution isectElimination thin isect_memberEquality voidElimination voidEquality dependent_set_memberEquality setElimination rename hypothesisEquality hypothesis natural_numberEquality because_Cache productElimination dependent_functionElimination unionElimination independent_isectElimination dependent_pairFormation lambdaEquality int_eqEquality intEquality independent_pairFormation computeAll applyEquality imageElimination imageMemberEquality baseClosed equalityTransitivity equalitySymmetry independent_functionElimination

Latex:
\mforall{}[n:\mBbbN{}\msupplus{}].  ((rot(n)  o  rot(n)\^{}n  -  1)  =  (\mlambda{}x.x))



Date html generated: 2017_04_17-AM-08_08_49
Last ObjectModification: 2017_02_27-PM-04_36_20

Theory : list_1


Home Index