Nuprl Lemma : coprime_divisors_prod

a1,a2,b:ℤ.  (CoPrime(a1,a2)  (a1 b)  (a2 b)  ((a1 a2) b))


Proof




Definitions occuring in Statement :  coprime: CoPrime(a,b) divides: a all: x:A. B[x] implies:  Q multiply: m int:
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q member: t ∈ T uall: [x:A]. B[x] prop: iff: ⇐⇒ Q and: P ∧ Q exists: x:A. B[x] divides: a top: Top uimplies: supposing a true: True squash: T subtype_rel: A ⊆B guard: {T} decidable: Dec(P) or: P ∨ Q not: ¬A satisfiable_int_formula: satisfiable_int_formula(fmla) false: False
Lemmas referenced :  divides_wf coprime_wf istype-int coprime_bezout_id istype-void mul_preserves_eq mul-distributes mul-swap mul-commutes one-mul equal_wf squash_wf true_wf add_functionality_wrt_eq subtype_rel_self iff_weakening_equal decidable__equal_int full-omega-unsat intformand_wf intformnot_wf intformeq_wf itermVar_wf itermMultiply_wf itermAdd_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_eq_lemma int_term_value_var_lemma int_term_value_mul_lemma int_term_value_add_lemma int_formula_prop_wf int_subtype_base
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity Error :lambdaFormation_alt,  Error :universeIsType,  cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis Error :inhabitedIsType,  dependent_functionElimination productElimination independent_functionElimination equalityTransitivity equalitySymmetry Error :isect_memberEquality_alt,  voidElimination independent_isectElimination sqequalRule intEquality multiplyEquality because_Cache natural_numberEquality applyEquality Error :lambdaEquality_alt,  imageElimination universeEquality imageMemberEquality baseClosed instantiate Error :dependent_pairFormation_alt,  addEquality unionElimination approximateComputation int_eqEquality independent_pairFormation Error :equalityIsType4

Latex:
\mforall{}a1,a2,b:\mBbbZ{}.    (CoPrime(a1,a2)  {}\mRightarrow{}  (a1  |  b)  {}\mRightarrow{}  (a2  |  b)  {}\mRightarrow{}  ((a1  *  a2)  |  b))



Date html generated: 2019_06_20-PM-02_23_48
Last ObjectModification: 2018_10_03-AM-00_12_58

Theory : num_thy_1


Home Index