Nuprl Lemma : decidable__exists-divisor
∀n:ℕ+. ∀P:ℕ ⟶ ℙ.  ((∀d:ℕ. Dec(P[d])) 
⇒ Dec(∃d:ℕ. ((d | n) ∧ P[d])))
Proof
Definitions occuring in Statement : 
divides: b | a
, 
nat_plus: ℕ+
, 
nat: ℕ
, 
decidable: Dec(P)
, 
prop: ℙ
, 
so_apply: x[s]
, 
all: ∀x:A. B[x]
, 
exists: ∃x:A. B[x]
, 
implies: P 
⇒ Q
, 
and: P ∧ Q
, 
function: x:A ⟶ B[x]
Definitions unfolded in proof : 
lelt: i ≤ j < k
, 
guard: {T}
, 
nat: ℕ
, 
cand: A c∧ B
, 
exists: ∃x:A. B[x]
, 
or: P ∨ Q
, 
decidable: Dec(P)
, 
not: ¬A
, 
false: False
, 
less_than': less_than'(a;b)
, 
le: A ≤ B
, 
uimplies: b supposing a
, 
subtype_rel: A ⊆r B
, 
so_apply: x[s]
, 
int_seg: {i..j-}
, 
and: P ∧ Q
, 
prop: ℙ
, 
so_lambda: λ2x.t[x]
, 
uall: ∀[x:A]. B[x]
, 
nat_plus: ℕ+
, 
member: t ∈ T
, 
implies: P 
⇒ Q
, 
all: ∀x:A. B[x]
, 
top: Top
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
Lemmas referenced : 
nat_plus_wf, 
decidable_wf, 
all_wf, 
exists_wf, 
not_wf, 
decidable__divides_ext, 
decidable__and2, 
int_seg_wf, 
false_wf, 
int_seg_subtype_nat, 
nat_wf, 
divides_wf, 
decidable__exists_int_seg, 
int_formula_prop_wf, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_term_value_add_lemma, 
int_term_value_var_lemma, 
int_formula_prop_less_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_and_lemma, 
intformle_wf, 
itermConstant_wf, 
itermAdd_wf, 
itermVar_wf, 
intformless_wf, 
intformnot_wf, 
intformand_wf, 
full-omega-unsat, 
decidable__lt, 
nat_plus_properties, 
le_wf, 
divisors_bound
Rules used in proof : 
cumulativity, 
functionEquality, 
voidElimination, 
dependent_set_memberEquality, 
inrFormation, 
dependent_pairFormation, 
productElimination, 
inlFormation, 
unionElimination, 
isect_memberEquality, 
independent_functionElimination, 
universeEquality, 
independent_pairFormation, 
independent_isectElimination, 
functionExtensionality, 
applyEquality, 
because_Cache, 
productEquality, 
lambdaEquality, 
sqequalRule, 
isectElimination, 
hypothesis, 
hypothesisEquality, 
rename, 
setElimination, 
addEquality, 
natural_numberEquality, 
dependent_functionElimination, 
sqequalHypSubstitution, 
extract_by_obid, 
introduction, 
instantiate, 
thin, 
cut, 
lambdaFormation, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution, 
voidEquality, 
intEquality, 
int_eqEquality, 
approximateComputation
Latex:
\mforall{}n:\mBbbN{}\msupplus{}.  \mforall{}P:\mBbbN{}  {}\mrightarrow{}  \mBbbP{}.    ((\mforall{}d:\mBbbN{}.  Dec(P[d]))  {}\mRightarrow{}  Dec(\mexists{}d:\mBbbN{}.  ((d  |  n)  \mwedge{}  P[d])))
Date html generated:
2018_05_21-PM-00_54_06
Last ObjectModification:
2018_01_01-PM-03_01_58
Theory : num_thy_1
Home
Index