Nuprl Lemma : decidable__exists-divisor

n:ℕ+. ∀P:ℕ ⟶ ℙ.  ((∀d:ℕDec(P[d]))  Dec(∃d:ℕ((d n) ∧ P[d])))


Proof




Definitions occuring in Statement :  divides: a nat_plus: + nat: decidable: Dec(P) prop: so_apply: x[s] all: x:A. B[x] exists: x:A. B[x] implies:  Q and: P ∧ Q function: x:A ⟶ B[x]
Definitions unfolded in proof :  lelt: i ≤ j < k guard: {T} nat: cand: c∧ B exists: x:A. B[x] or: P ∨ Q decidable: Dec(P) not: ¬A false: False less_than': less_than'(a;b) le: A ≤ B uimplies: supposing a subtype_rel: A ⊆B so_apply: x[s] int_seg: {i..j-} and: P ∧ Q prop: so_lambda: λ2x.t[x] uall: [x:A]. B[x] nat_plus: + member: t ∈ T implies:  Q all: x:A. B[x] top: Top satisfiable_int_formula: satisfiable_int_formula(fmla)
Lemmas referenced :  nat_plus_wf decidable_wf all_wf exists_wf not_wf decidable__divides_ext decidable__and2 int_seg_wf false_wf int_seg_subtype_nat nat_wf divides_wf decidable__exists_int_seg int_formula_prop_wf int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_add_lemma int_term_value_var_lemma int_formula_prop_less_lemma int_formula_prop_not_lemma int_formula_prop_and_lemma intformle_wf itermConstant_wf itermAdd_wf itermVar_wf intformless_wf intformnot_wf intformand_wf full-omega-unsat decidable__lt nat_plus_properties le_wf divisors_bound
Rules used in proof :  cumulativity functionEquality voidElimination dependent_set_memberEquality inrFormation dependent_pairFormation productElimination inlFormation unionElimination isect_memberEquality independent_functionElimination universeEquality independent_pairFormation independent_isectElimination functionExtensionality applyEquality because_Cache productEquality lambdaEquality sqequalRule isectElimination hypothesis hypothesisEquality rename setElimination addEquality natural_numberEquality dependent_functionElimination sqequalHypSubstitution extract_by_obid introduction instantiate thin cut lambdaFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution voidEquality intEquality int_eqEquality approximateComputation

Latex:
\mforall{}n:\mBbbN{}\msupplus{}.  \mforall{}P:\mBbbN{}  {}\mrightarrow{}  \mBbbP{}.    ((\mforall{}d:\mBbbN{}.  Dec(P[d]))  {}\mRightarrow{}  Dec(\mexists{}d:\mBbbN{}.  ((d  |  n)  \mwedge{}  P[d])))



Date html generated: 2018_05_21-PM-00_54_06
Last ObjectModification: 2018_01_01-PM-03_01_58

Theory : num_thy_1


Home Index