Nuprl Lemma : double_sum_difference

[n,m:ℕ]. ∀[f,g:ℕn ⟶ ℕm ⟶ ℤ]. ∀[d:ℤ].
  sum(f[x;y] x < n; y < m) (sum(g[x;y] x < n; y < m) d) ∈ ℤ 
  supposing sum(f[x;y] g[x;y] x < n; y < m) d ∈ ℤ


Proof




Definitions occuring in Statement :  double_sum: sum(f[x; y] x < n; y < m) int_seg: {i..j-} nat: uimplies: supposing a uall: [x:A]. B[x] so_apply: x[s1;s2] function: x:A ⟶ B[x] subtract: m add: m natural_number: $n int: equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] nat: subtype_rel: A ⊆B prop: double_sum: sum(f[x; y] x < n; y < m) so_lambda: λ2x.t[x] so_apply: x[s] sq_type: SQType(T) all: x:A. B[x] implies:  Q guard: {T} int_seg: {i..j-} ge: i ≥  lelt: i ≤ j < k and: P ∧ Q decidable: Dec(P) or: P ∨ Q false: False uiff: uiff(P;Q) not: ¬A satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] top: Top
Lemmas referenced :  equal-wf-T-base double_sum_wf subtract_wf int_seg_wf int_subtype_base nat_wf sum_difference sum_wf subtype_base_sq sum_functionality int_seg_properties nat_properties decidable__equal_int add-is-int-iff full-omega-unsat intformand_wf intformnot_wf intformeq_wf itermSubtract_wf itermVar_wf itermAdd_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_eq_lemma int_term_value_subtract_lemma int_term_value_var_lemma int_term_value_add_lemma int_formula_prop_wf false_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity Error :isect_memberFormation_alt,  introduction cut hypothesis Error :universeIsType,  extract_by_obid sqequalHypSubstitution isectElimination thin intEquality hypothesisEquality sqequalRule lambdaEquality applyEquality natural_numberEquality setElimination rename isect_memberEquality axiomEquality because_Cache equalityTransitivity equalitySymmetry Error :inhabitedIsType,  functionEquality Error :functionIsType,  independent_isectElimination instantiate cumulativity dependent_functionElimination independent_functionElimination lambdaFormation productElimination unionElimination pointwiseFunctionality promote_hyp baseApply closedConclusion baseClosed approximateComputation dependent_pairFormation int_eqEquality voidElimination voidEquality independent_pairFormation

Latex:
\mforall{}[n,m:\mBbbN{}].  \mforall{}[f,g:\mBbbN{}n  {}\mrightarrow{}  \mBbbN{}m  {}\mrightarrow{}  \mBbbZ{}].  \mforall{}[d:\mBbbZ{}].
    sum(f[x;y]  |  x  <  n;  y  <  m)  =  (sum(g[x;y]  |  x  <  n;  y  <  m)  +  d) 
    supposing  sum(f[x;y]  -  g[x;y]  |  x  <  n;  y  <  m)  =  d



Date html generated: 2019_06_20-PM-02_29_44
Last ObjectModification: 2018_09_26-PM-06_05_08

Theory : num_thy_1


Home Index