Nuprl Lemma : fibs-equal-map
fibs() = stream-map(λn.fib(n);nats()) ∈ stream(ℕ)
Proof
Definitions occuring in Statement : 
fibs: fibs()
, 
fib: fib(n)
, 
nats: nats()
, 
stream-map: stream-map(f;s)
, 
stream: stream(A)
, 
nat: ℕ
, 
lambda: λx.A[x]
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
uimplies: b supposing a
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
, 
label: ...$L... t
, 
nat: ℕ
, 
ge: i ≥ j 
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
not: ¬A
, 
implies: P 
⇒ Q
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
, 
false: False
, 
top: Top
, 
and: P ∧ Q
, 
prop: ℙ
, 
guard: {T}
, 
subtype_rel: A ⊆r B
, 
true: True
, 
squash: ↓T
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
Lemmas referenced : 
nat_wf, 
nat_properties, 
decidable__equal_int, 
full-omega-unsat, 
intformand_wf, 
intformnot_wf, 
intformeq_wf, 
itermVar_wf, 
istype-int, 
int_formula_prop_and_lemma, 
istype-void, 
int_formula_prop_not_lemma, 
int_formula_prop_eq_lemma, 
int_term_value_var_lemma, 
int_formula_prop_wf, 
decidable__le, 
fib_wf, 
intformle_wf, 
itermConstant_wf, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
istype-le, 
s-nth_wf, 
fibs_wf, 
nats_wf, 
stream-subtype, 
top_wf, 
istype-nat, 
equal_wf, 
squash_wf, 
true_wf, 
istype-universe, 
nth-fibs, 
nth-stream-map, 
nth-nats, 
subtype_rel_self, 
iff_weakening_equal, 
stream-extensionality, 
stream-map_wf
Rules used in proof : 
because_Cache, 
lambdaFormation, 
independent_isectElimination, 
hypothesisEquality, 
lambdaEquality, 
hypothesis, 
thin, 
isectElimination, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution, 
sqequalHypSubstitution, 
lemma_by_obid, 
cut, 
introduction, 
extract_by_obid, 
setElimination, 
rename, 
dependent_functionElimination, 
equalityTransitivity, 
equalitySymmetry, 
unionElimination, 
natural_numberEquality, 
approximateComputation, 
independent_functionElimination, 
Error :dependent_pairFormation_alt, 
Error :lambdaEquality_alt, 
int_eqEquality, 
Error :isect_memberEquality_alt, 
voidElimination, 
sqequalRule, 
independent_pairFormation, 
Error :universeIsType, 
Error :dependent_set_memberEquality_alt, 
applyLambdaEquality, 
applyEquality, 
imageElimination, 
Error :inhabitedIsType, 
instantiate, 
universeEquality, 
imageMemberEquality, 
baseClosed, 
productElimination
Latex:
fibs()  =  stream-map(\mlambda{}n.fib(n);nats())
Date html generated:
2019_06_20-PM-02_28_09
Last ObjectModification:
2019_01_15-PM-03_33_57
Theory : num_thy_1
Home
Index