Nuprl Lemma : has-value-equality-fix
∀[T,E,S:Type].  ∀[G:T ⟶ partial(E)]. ∀[g:T ⟶ T].  ((G fix(g))↓ ∈ ℙ) supposing value-type(E) ∧ (⊥ ∈ T)
Proof
Definitions occuring in Statement : 
partial: partial(T)
, 
value-type: value-type(T)
, 
has-value: (a)↓
, 
bottom: ⊥
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
and: P ∧ Q
, 
member: t ∈ T
, 
apply: f a
, 
fix: fix(F)
, 
function: x:A ⟶ B[x]
, 
universe: Type
Definitions unfolded in proof : 
member: t ∈ T
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
uall: ∀[x:A]. B[x]
, 
and: P ∧ Q
, 
subtype_rel: A ⊆r B
, 
guard: {T}
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
uimplies: b supposing a
, 
top: Top
, 
pi2: snd(t)
, 
pi1: fst(t)
, 
cand: A c∧ B
, 
squash: ↓T
, 
prop: ℙ
, 
true: True
, 
iff: P 
⇐⇒ Q
, 
has-value: (a)↓
, 
nat: ℕ
, 
rev_implies: P 
⇐ Q
Lemmas referenced : 
pair-eta, 
subtype_rel_product, 
partial_wf, 
top_wf, 
istype-top, 
istype-void, 
has-value_wf_base, 
member_wf, 
istype-universe, 
value-type_wf, 
has-value-extensionality, 
fun_exp0_lemma, 
equal_wf, 
squash_wf, 
true_wf, 
fun_exp_wf, 
nat_wf, 
le_weakening2, 
le_wf, 
subtype_rel_self, 
iff_weakening_equal, 
int_subtype_base, 
istype-int, 
less_than_wf, 
primrec-wf2, 
equal-wf-base, 
has-value_wf-partial, 
is-exception_wf, 
fixpoint-upper-bound, 
has-value-monotonic, 
set_subtype_base
Rules used in proof : 
cut, 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
independent_pairEquality, 
hypothesisEquality, 
Error :inhabitedIsType, 
hypothesis, 
Error :lambdaFormation_alt, 
thin, 
pointwiseFunctionality, 
sqequalRule, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
productElimination, 
equalityTransitivity, 
equalitySymmetry, 
applyEquality, 
functionEquality, 
Error :lambdaEquality_alt, 
because_Cache, 
Error :functionIsType, 
Error :universeIsType, 
independent_isectElimination, 
Error :isect_memberEquality_alt, 
voidElimination, 
baseApply, 
closedConclusion, 
baseClosed, 
applyLambdaEquality, 
independent_pairFormation, 
instantiate, 
imageElimination, 
universeEquality, 
natural_numberEquality, 
imageMemberEquality, 
Error :equalityIsType1, 
dependent_functionElimination, 
independent_functionElimination, 
Error :productIsType, 
Error :equalityIsType4, 
Error :isect_memberFormation_alt, 
axiomEquality, 
compactness, 
rename, 
setElimination, 
Error :dependent_set_memberEquality_alt, 
Error :setIsType, 
axiomSqleEquality, 
hyp_replacement, 
sqleRule, 
divergentSqle, 
sqleReflexivity, 
intEquality
Latex:
\mforall{}[T,E,S:Type].
    \mforall{}[G:T  {}\mrightarrow{}  partial(E)].  \mforall{}[g:T  {}\mrightarrow{}  T].    ((G  fix(g))\mdownarrow{}  \mmember{}  \mBbbP{})  supposing  value-type(E)  \mwedge{}  (\mbot{}  \mmember{}  T)
Date html generated:
2019_06_20-PM-00_34_02
Last ObjectModification:
2018_10_07-PM-09_32_01
Theory : partial_1
Home
Index