Nuprl Lemma : bag-function

[T,A:Type]. ∀[f:(T List) ⟶ bag(A)].
  f ∈ bag(T) ⟶ bag(A) supposing ∀as,bs:T List.  (f[as bs] (f[as] f[bs]) ∈ bag(A))


Proof




Definitions occuring in Statement :  bag-append: as bs bag: bag(T) append: as bs list: List uimplies: supposing a uall: [x:A]. B[x] so_apply: x[s] all: x:A. B[x] member: t ∈ T function: x:A ⟶ B[x] universe: Type equal: t ∈ T
Definitions unfolded in proof :  member: t ∈ T squash: T uall: [x:A]. B[x] prop: so_lambda: λ2x.t[x] so_apply: x[s] all: x:A. B[x] true: True subtype_rel: A ⊆B uimplies: supposing a guard: {T} iff: ⇐⇒ Q and: P ∧ Q rev_implies:  Q implies:  Q append: as bs so_lambda: so_lambda(x,y,z.t[x; y; z]) top: Top so_apply: x[s1;s2;s3] bag: bag(T) quotient: x,y:A//B[x; y] so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] trans: Trans(T;x,y.E[x; y]) refl: Refl(T;x,y.E[x; y])
Lemmas referenced :  all_wf squash_wf true_wf list_wf equal_wf bag_wf cons_wf nil_wf iff_weakening_equal list_ind_cons_lemma list_ind_nil_lemma permutation-invariant2 bag-append_wf bag-append-assoc-comm equal-wf-base permutation_wf bag-append-comm append_wf
Rules used in proof :  cut applyEquality thin sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaEquality sqequalHypSubstitution imageElimination introduction extract_by_obid isectElimination hypothesisEquality equalityTransitivity hypothesis equalitySymmetry functionEquality cumulativity universeEquality because_Cache sqequalRule functionExtensionality dependent_functionElimination natural_numberEquality imageMemberEquality baseClosed independent_isectElimination productElimination independent_functionElimination lambdaFormation isect_memberEquality voidElimination voidEquality pointwiseFunctionalityForEquality pertypeElimination productEquality isect_memberFormation axiomEquality

Latex:
\mforall{}[T,A:Type].  \mforall{}[f:(T  List)  {}\mrightarrow{}  bag(A)].
    f  \mmember{}  bag(T)  {}\mrightarrow{}  bag(A)  supposing  \mforall{}as,bs:T  List.    (f[as  @  bs]  =  (f[as]  +  f[bs]))



Date html generated: 2017_10_01-AM-08_45_09
Last ObjectModification: 2017_07_26-PM-04_30_34

Theory : bags


Home Index