Nuprl Lemma : bag-function
∀[T,A:Type]. ∀[f:(T List) ⟶ bag(A)].
  f ∈ bag(T) ⟶ bag(A) supposing ∀as,bs:T List.  (f[as @ bs] = (f[as] + f[bs]) ∈ bag(A))
Proof
Definitions occuring in Statement : 
bag-append: as + bs
, 
bag: bag(T)
, 
append: as @ bs
, 
list: T List
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
so_apply: x[s]
, 
all: ∀x:A. B[x]
, 
member: t ∈ T
, 
function: x:A ⟶ B[x]
, 
universe: Type
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
member: t ∈ T
, 
squash: ↓T
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
all: ∀x:A. B[x]
, 
true: True
, 
subtype_rel: A ⊆r B
, 
uimplies: b supposing a
, 
guard: {T}
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
rev_implies: P 
⇐ Q
, 
implies: P 
⇒ Q
, 
append: as @ bs
, 
so_lambda: so_lambda(x,y,z.t[x; y; z])
, 
top: Top
, 
so_apply: x[s1;s2;s3]
, 
bag: bag(T)
, 
quotient: x,y:A//B[x; y]
, 
so_lambda: λ2x y.t[x; y]
, 
so_apply: x[s1;s2]
, 
trans: Trans(T;x,y.E[x; y])
, 
refl: Refl(T;x,y.E[x; y])
Lemmas referenced : 
all_wf, 
squash_wf, 
true_wf, 
list_wf, 
equal_wf, 
bag_wf, 
cons_wf, 
nil_wf, 
iff_weakening_equal, 
list_ind_cons_lemma, 
list_ind_nil_lemma, 
permutation-invariant2, 
bag-append_wf, 
bag-append-assoc-comm, 
equal-wf-base, 
permutation_wf, 
bag-append-comm, 
append_wf
Rules used in proof : 
cut, 
applyEquality, 
thin, 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaEquality, 
sqequalHypSubstitution, 
imageElimination, 
introduction, 
extract_by_obid, 
isectElimination, 
hypothesisEquality, 
equalityTransitivity, 
hypothesis, 
equalitySymmetry, 
functionEquality, 
cumulativity, 
universeEquality, 
because_Cache, 
sqequalRule, 
functionExtensionality, 
dependent_functionElimination, 
natural_numberEquality, 
imageMemberEquality, 
baseClosed, 
independent_isectElimination, 
productElimination, 
independent_functionElimination, 
lambdaFormation, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
pointwiseFunctionalityForEquality, 
pertypeElimination, 
productEquality, 
isect_memberFormation, 
axiomEquality
Latex:
\mforall{}[T,A:Type].  \mforall{}[f:(T  List)  {}\mrightarrow{}  bag(A)].
    f  \mmember{}  bag(T)  {}\mrightarrow{}  bag(A)  supposing  \mforall{}as,bs:T  List.    (f[as  @  bs]  =  (f[as]  +  f[bs]))
Date html generated:
2017_10_01-AM-08_45_09
Last ObjectModification:
2017_07_26-PM-04_30_34
Theory : bags
Home
Index