Nuprl Lemma : bag-count-single

[T:Type]. ∀[eq:EqDecider(T)]. ∀[x,y:T].  ((#x in [y]) if eq then else fi  ∈ ℤ)


Proof




Definitions occuring in Statement :  bag-count: (#x in bs) cons: [a b] nil: [] deq: EqDecider(T) ifthenelse: if then else fi  uall: [x:A]. B[x] apply: a natural_number: $n int: universe: Type equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T subtype_rel: A ⊆B uimplies: supposing a bag-filter: [x∈b|p[x]] all: x:A. B[x] top: Top deq: EqDecider(T) implies:  Q bool: 𝔹 unit: Unit it: btrue: tt uiff: uiff(P;Q) and: P ∧ Q eqof: eqof(d) ifthenelse: if then else fi  bag-size: #(bs) length: ||as|| list_ind: list_ind cons: [a b] nil: [] bfalse: ff exists: x:A. B[x] prop: or: P ∨ Q sq_type: SQType(T) guard: {T} bnot: ¬bb assert: b false: False not: ¬A
Lemmas referenced :  bag-count-sqequal cons_wf nil_wf list-subtype-bag filter_cons_lemma filter_nil_lemma bool_wf eqtt_to_assert safe-assert-deq eqff_to_assert equal_wf bool_cases_sqequal subtype_base_sq bool_subtype_base assert-bnot deq_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule extract_by_obid sqequalHypSubstitution isectElimination thin because_Cache cumulativity hypothesisEquality hypothesis applyEquality independent_isectElimination lambdaEquality dependent_functionElimination isect_memberEquality voidElimination voidEquality setElimination rename lambdaFormation unionElimination equalityElimination equalityTransitivity equalitySymmetry productElimination natural_numberEquality dependent_pairFormation promote_hyp instantiate independent_functionElimination axiomEquality universeEquality

Latex:
\mforall{}[T:Type].  \mforall{}[eq:EqDecider(T)].  \mforall{}[x,y:T].    ((\#x  in  [y])  =  if  eq  x  y  then  1  else  0  fi  )



Date html generated: 2018_05_21-PM-09_45_50
Last ObjectModification: 2017_07_26-PM-06_29_53

Theory : bags_2


Home Index