Nuprl Lemma : bag-extensionality2

[T:Type]. ∀[eq:EqDecider(T)]. ∀[as,bs:bag(T)].
  uiff(as bs ∈ bag(T);(∀x:T. (x ↓∈ as  ((#x in as) (#x in bs) ∈ ℤ))) ∧ (∀x:T. (x ↓∈ bs  x ↓∈ as)))


Proof




Definitions occuring in Statement :  bag-count: (#x in bs) bag-member: x ↓∈ bs bag: bag(T) deq: EqDecider(T) uiff: uiff(P;Q) uall: [x:A]. B[x] all: x:A. B[x] implies:  Q and: P ∧ Q int: universe: Type equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uiff: uiff(P;Q) and: P ∧ Q uimplies: supposing a cand: c∧ B all: x:A. B[x] implies:  Q squash: T prop: subtype_rel: A ⊆B true: True guard: {T} iff: ⇐⇒ Q rev_implies:  Q bag-member: x ↓∈ bs decidable: Dec(P) or: P ∨ Q less_than: a < b satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False not: ¬A top: Top nat: ge: i ≥  so_lambda: λ2x.t[x] so_apply: x[s]
Lemmas referenced :  bag-extensionality equal_wf squash_wf true_wf bag-count_wf iff_weakening_equal bag-member_wf and_wf bag_wf decidable__lt bag-member-count decidable__le satisfiable-full-omega-tt intformand_wf intformnot_wf intformle_wf itermConstant_wf itermVar_wf intformless_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_less_lemma int_formula_prop_wf decidable__equal_int nat_properties intformeq_wf int_formula_prop_eq_lemma all_wf nat_wf deq_wf
Rules used in proof :  cut introduction extract_by_obid sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation hypothesis sqequalHypSubstitution isectElimination thin hypothesisEquality independent_pairFormation productElimination independent_isectElimination lambdaFormation applyEquality lambdaEquality imageElimination equalityTransitivity equalitySymmetry universeEquality intEquality dependent_functionElimination cumulativity because_Cache sqequalRule natural_numberEquality imageMemberEquality baseClosed independent_functionElimination addLevel hyp_replacement dependent_set_memberEquality applyLambdaEquality setElimination rename levelHypothesis independent_pairEquality axiomEquality unionElimination dependent_pairFormation int_eqEquality isect_memberEquality voidElimination voidEquality computeAll productEquality functionEquality

Latex:
\mforall{}[T:Type].  \mforall{}[eq:EqDecider(T)].  \mforall{}[as,bs:bag(T)].
    uiff(as  =  bs;(\mforall{}x:T.  (x  \mdownarrow{}\mmember{}  as  {}\mRightarrow{}  ((\#x  in  as)  =  (\#x  in  bs))))  \mwedge{}  (\mforall{}x:T.  (x  \mdownarrow{}\mmember{}  bs  {}\mRightarrow{}  x  \mdownarrow{}\mmember{}  as)))



Date html generated: 2018_05_21-PM-09_47_05
Last ObjectModification: 2017_07_26-PM-06_30_07

Theory : bags_2


Home Index