Nuprl Lemma : bag-member-remove

[T:Type]. ∀[eq:EqDecider(T)]. ∀[bs:bag(T)]. ∀[x,z:T].  uiff(z ↓∈ bs x;z ↓∈ bs ∧ (z x ∈ T)))


Proof




Definitions occuring in Statement :  bag-remove: bs x bag-member: x ↓∈ bs bag: bag(T) deq: EqDecider(T) uiff: uiff(P;Q) uall: [x:A]. B[x] not: ¬A and: P ∧ Q universe: Type equal: t ∈ T
Definitions unfolded in proof :  bag-remove: bs x uiff: uiff(P;Q) and: P ∧ Q uimplies: supposing a member: t ∈ T not: ¬A implies:  Q false: False prop: uall: [x:A]. B[x] bag-member: x ↓∈ bs squash: T deq: EqDecider(T) iff: ⇐⇒ Q rev_implies:  Q eqof: eqof(d) so_lambda: λ2x.t[x] so_apply: x[s] subtype_rel: A ⊆B
Lemmas referenced :  equal_wf bag-member_wf assert_wf bnot_wf iff_transitivity eqof_wf not_wf iff_weakening_uiff assert_of_bnot safe-assert-deq assert_witness bag-filter_wf subtype_rel_bag bag-member-filter uiff_wf bag-remove_wf bag_wf deq_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity cut independent_pairFormation isect_memberFormation introduction sqequalHypSubstitution productElimination thin hypothesis lambdaFormation independent_functionElimination voidElimination extract_by_obid isectElimination cumulativity hypothesisEquality sqequalRule independent_pairEquality imageElimination imageMemberEquality baseClosed lambdaEquality dependent_functionElimination productEquality applyEquality setElimination rename equalitySymmetry addLevel because_Cache impliesFunctionality independent_isectElimination setEquality universeEquality isect_memberEquality equalityTransitivity promote_hyp

Latex:
\mforall{}[T:Type].  \mforall{}[eq:EqDecider(T)].  \mforall{}[bs:bag(T)].  \mforall{}[x,z:T].    uiff(z  \mdownarrow{}\mmember{}  bs  -  x;z  \mdownarrow{}\mmember{}  bs  \mwedge{}  (\mneg{}(z  =  x)))



Date html generated: 2018_05_21-PM-09_47_41
Last ObjectModification: 2017_07_26-PM-06_30_23

Theory : bags_2


Home Index