Nuprl Lemma : bag-remove-trivial

[T:Type]. ∀[eq:EqDecider(T)]. ∀[bs:bag(T)]. ∀[x:T].  bs bs ∈ bag(T) supposing ¬x ↓∈ bs


Proof




Definitions occuring in Statement :  bag-remove: bs x bag-member: x ↓∈ bs bag: bag(T) deq: EqDecider(T) uimplies: supposing a uall: [x:A]. B[x] not: ¬A universe: Type equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a bag-remove: bs x prop: deq: EqDecider(T) all: x:A. B[x] implies:  Q not: ¬A iff: ⇐⇒ Q and: P ∧ Q uiff: uiff(P;Q) rev_implies:  Q eqof: eqof(d) true: True squash: T so_lambda: λ2x.t[x] so_apply: x[s] subtype_rel: A ⊆B guard: {T} false: False
Lemmas referenced :  not_wf bag-member_wf bag_wf deq_wf bnot_wf equal_wf iff_transitivity assert_wf eqof_wf iff_weakening_uiff assert_of_bnot safe-assert-deq squash_wf true_wf bag-filter-trivial2 iff_weakening_equal and_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut hypothesis extract_by_obid sqequalHypSubstitution isectElimination thin cumulativity hypothesisEquality sqequalRule isect_memberEquality axiomEquality because_Cache equalityTransitivity equalitySymmetry universeEquality lambdaEquality applyEquality setElimination rename lambdaFormation addLevel independent_functionElimination independent_pairFormation impliesFunctionality productElimination independent_isectElimination natural_numberEquality imageElimination imageMemberEquality baseClosed hyp_replacement dependent_set_memberEquality applyLambdaEquality voidElimination

Latex:
\mforall{}[T:Type].  \mforall{}[eq:EqDecider(T)].  \mforall{}[bs:bag(T)].  \mforall{}[x:T].    bs  -  x  =  bs  supposing  \mneg{}x  \mdownarrow{}\mmember{}  bs



Date html generated: 2018_05_21-PM-09_47_44
Last ObjectModification: 2017_07_26-PM-06_30_24

Theory : bags_2


Home Index