Nuprl Lemma : dl-diamond-unwind-1
∀a:Prog. ∀phi:Prop. |= <(a)*> phi
⇒ (phi ∨ <a> (phi
⇒ 0) ∨ <(a)*> phi)
Proof
Definitions occuring in Statement :
dl-valid: |= phi
,
dl-diamond: <x1> x
,
dl-or: x1 ∨ x
,
dl-implies: x1
⇒ x
,
dl-false: 0
,
dl-iterate: (x)*
,
dl-prop: Prop
,
dl-prog: Prog
,
all: ∀x:A. B[x]
Definitions unfolded in proof :
all: ∀x:A. B[x]
,
dl-valid: |= phi
,
dl-prop-sem: [|phi|]
,
dl-sem: dl-sem(K;n.R[n];m.P[m])
,
uall: ∀[x:A]. B[x]
,
so_lambda: λ2x.t[x]
,
member: t ∈ T
,
top: Top
,
so_apply: x[s]
,
so_lambda: so_lambda(x,y,z,w.t[x; y; z; w])
,
so_apply: x[s1;s2;s3;s4]
,
so_lambda: λ2x y.t[x; y]
,
so_apply: x[s1;s2]
,
dl-prog-sem: [|alpha|]
,
implies: P
⇒ Q
,
exists: ∃x:A. B[x]
,
and: P ∧ Q
,
subtype_rel: A ⊆r B
,
prop: ℙ
,
rel_star: R^*
,
infix_ap: x f y
,
nat: ℕ
,
le: A ≤ B
,
less_than': less_than'(a;b)
,
not: ¬A
,
false: False
,
decidable: Dec(P)
,
or: P ∨ Q
,
uimplies: b supposing a
,
satisfiable_int_formula: satisfiable_int_formula(fmla)
,
rel_exp: R^n
,
ifthenelse: if b then t else f fi
,
eq_int: (i =z j)
,
btrue: tt
,
iff: P
⇐⇒ Q
,
rev_implies: P
⇐ Q
,
sq_type: SQType(T)
,
guard: {T}
,
cand: A c∧ B
Lemmas referenced :
dl-ind-dl-implies,
istype-void,
dl-ind-dl-diamond,
dl-ind-dl-iterate,
dl-ind-dl-or,
dl-ind-dl-false,
rel_star_wf,
dl-prog-sem_wf,
istype-nat,
subtype_rel_self,
dl-prop-sem_wf,
istype-universe,
dl-prop_wf,
dl-prog_wf,
rel_exp_wf,
istype-le,
decidable__le,
full-omega-unsat,
intformand_wf,
intformnot_wf,
intformle_wf,
itermConstant_wf,
itermVar_wf,
intformless_wf,
istype-int,
int_formula_prop_and_lemma,
int_formula_prop_not_lemma,
int_formula_prop_le_lemma,
int_term_value_constant_lemma,
int_term_value_var_lemma,
int_formula_prop_less_lemma,
int_formula_prop_wf,
subtract_wf,
itermSubtract_wf,
int_term_value_subtract_lemma,
istype-less_than,
primrec-wf2,
false_wf,
rel_exp_add_iff,
decidable__equal_int,
intformeq_wf,
itermAdd_wf,
int_formula_prop_eq_lemma,
int_term_value_add_lemma,
subtype_base_sq,
int_subtype_base,
rel_exp1
Rules used in proof :
sqequalSubstitution,
sqequalTransitivity,
computationStep,
sqequalReflexivity,
lambdaFormation_alt,
sqequalRule,
cut,
introduction,
extract_by_obid,
sqequalHypSubstitution,
isectElimination,
thin,
isect_memberEquality_alt,
voidElimination,
hypothesis,
productElimination,
productIsType,
because_Cache,
universeIsType,
applyEquality,
hypothesisEquality,
lambdaEquality_alt,
instantiate,
universeEquality,
functionIsType,
dependent_set_memberEquality_alt,
natural_numberEquality,
independent_pairFormation,
rename,
setElimination,
dependent_functionElimination,
unionElimination,
independent_isectElimination,
approximateComputation,
independent_functionElimination,
dependent_pairFormation_alt,
int_eqEquality,
unionIsType,
inhabitedIsType,
setIsType,
functionEquality,
unionEquality,
productEquality,
inlFormation_alt,
hyp_replacement,
equalitySymmetry,
cumulativity,
intEquality,
equalityTransitivity,
inrFormation_alt
Latex:
\mforall{}a:Prog. \mforall{}phi:Prop. |= <(a)*> phi {}\mRightarrow{} (phi \mvee{} <a> (phi {}\mRightarrow{} 0) \mvee{} <(a)*> phi)
Date html generated:
2019_10_15-AM-11_46_36
Last ObjectModification:
2019_04_25-PM-01_18_50
Theory : dynamic!logic
Home
Index