Nuprl Lemma : rel_exp_add_iff
∀[T:Type]. ∀[R:T ⟶ T ⟶ ℙ].  ∀m,n:ℕ. ∀x,z:T.  (x R^m + n z 
⇐⇒ ∃y:T. ((x R^m y) ∧ (y R^n z)))
Proof
Definitions occuring in Statement : 
rel_exp: R^n
, 
nat: ℕ
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
infix_ap: x f y
, 
all: ∀x:A. B[x]
, 
exists: ∃x:A. B[x]
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
function: x:A ⟶ B[x]
, 
add: n + m
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
member: t ∈ T
, 
implies: P 
⇒ Q
, 
prop: ℙ
, 
so_lambda: λ2x.t[x]
, 
nat: ℕ
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
not: ¬A
, 
rev_implies: P 
⇐ Q
, 
false: False
, 
uiff: uiff(P;Q)
, 
uimplies: b supposing a
, 
subtract: n - m
, 
subtype_rel: A ⊆r B
, 
top: Top
, 
le: A ≤ B
, 
less_than': less_than'(a;b)
, 
true: True
, 
guard: {T}
, 
sq_stable: SqStable(P)
, 
squash: ↓T
, 
so_apply: x[s]
, 
rel_exp: R^n
, 
eq_int: (i =z j)
, 
ifthenelse: if b then t else f fi 
, 
btrue: tt
, 
infix_ap: x f y
, 
exists: ∃x:A. B[x]
, 
bool: 𝔹
, 
unit: Unit
, 
it: ⋅
, 
cand: A c∧ B
, 
bfalse: ff
, 
sq_type: SQType(T)
, 
bnot: ¬bb
, 
assert: ↑b
, 
ge: i ≥ j 
, 
nat_plus: ℕ+
, 
less_than: a < b
, 
nequal: a ≠ b ∈ T 
Lemmas referenced : 
all_wf, 
nat_wf, 
iff_wf, 
infix_ap_wf, 
rel_exp_wf, 
subtract_wf, 
add_nat_wf, 
decidable__le, 
false_wf, 
not-le-2, 
less-iff-le, 
condition-implies-le, 
minus-one-mul, 
zero-add, 
minus-one-mul-top, 
minus-add, 
minus-minus, 
add-associates, 
add-swap, 
add-commutes, 
add_functionality_wrt_le, 
add-zero, 
le-add-cancel, 
le_wf, 
sq_stable__le, 
equal_wf, 
exists_wf, 
set_wf, 
less_than_wf, 
primrec-wf2, 
and_wf, 
eq_int_wf, 
bool_wf, 
eqtt_to_assert, 
assert_of_eq_int, 
le_weakening2, 
eqff_to_assert, 
bool_cases_sqequal, 
subtype_base_sq, 
bool_subtype_base, 
assert-bnot, 
neg_assert_of_eq_int, 
minus-zero, 
add-mul-special, 
zero-mul, 
int_subtype_base, 
le_reflexive, 
one-mul, 
two-mul, 
mul-distributes-right, 
mul-associates, 
omega-shadow, 
nat_properties, 
general_arith_equation1, 
not-equal-2, 
less_than_transitivity1, 
le_weakening, 
less_than_irreflexivity
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
lambdaFormation, 
cut, 
thin, 
hypothesisEquality, 
because_Cache, 
rename, 
setElimination, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
hypothesis, 
sqequalRule, 
lambdaEquality, 
cumulativity, 
instantiate, 
universeEquality, 
dependent_set_memberEquality, 
addEquality, 
natural_numberEquality, 
dependent_functionElimination, 
unionElimination, 
independent_pairFormation, 
voidElimination, 
productElimination, 
independent_functionElimination, 
independent_isectElimination, 
applyEquality, 
isect_memberEquality, 
voidEquality, 
intEquality, 
minusEquality, 
imageMemberEquality, 
baseClosed, 
imageElimination, 
equalityTransitivity, 
equalitySymmetry, 
functionExtensionality, 
productEquality, 
functionEquality, 
dependent_pairFormation, 
addLevel, 
hyp_replacement, 
applyLambdaEquality, 
levelHypothesis, 
equalityElimination, 
promote_hyp, 
multiplyEquality, 
impliesFunctionality, 
existsFunctionality, 
andLevelFunctionality, 
existsLevelFunctionality
Latex:
\mforall{}[T:Type].  \mforall{}[R:T  {}\mrightarrow{}  T  {}\mrightarrow{}  \mBbbP{}].
    \mforall{}m,n:\mBbbN{}.  \mforall{}x,z:T.    (x  R\^{}m  +  n  z  \mLeftarrow{}{}\mRightarrow{}  \mexists{}y:T.  ((x  R\^{}m  y)  \mwedge{}  (y  rel\_exp(T;  R;  n)  z)))
Date html generated:
2017_04_14-AM-07_38_17
Last ObjectModification:
2017_02_27-PM-03_10_39
Theory : relations
Home
Index