Nuprl Lemma : int-union-disjoint

[T,S:Type].  (¬ℤ ⋂ S)


Proof




Definitions occuring in Statement :  isect2: T1 ⋂ T2 uall: [x:A]. B[x] not: ¬A union: left right int: universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T not: ¬A implies:  Q false: False and: P ∧ Q cand: c∧ B all: x:A. B[x] subtype_rel: A ⊆B uimplies: supposing a guard: {T} or: P ∨ Q top: Top sq_type: SQType(T) uiff: uiff(P;Q) ifthenelse: if then else fi  btrue: tt bfalse: ff
Lemmas referenced :  isect2_decomp injection-eta isect2_subtype_rel3 top_wf subtype_rel_union subtype_rel_wf isl_wf bool_cases subtype_base_sq bool_wf bool_subtype_base eqtt_to_assert isint-int eqff_to_assert assert_of_bnot bfalse_wf btrue_neq_bfalse isect2_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut lambdaFormation thin rename lemma_by_obid sqequalHypSubstitution isectElimination intEquality unionEquality hypothesisEquality productElimination equalityTransitivity hypothesis equalitySymmetry independent_pairFormation dependent_functionElimination applyEquality because_Cache independent_isectElimination sqequalRule inrFormation lambdaEquality isect_memberEquality voidElimination voidEquality unionElimination instantiate cumulativity independent_functionElimination universeEquality

Latex:
\mforall{}[T,S:Type].    (\mneg{}\mBbbZ{}  \mcap{}  T  +  S)



Date html generated: 2016_05_15-PM-10_08_01
Last ObjectModification: 2015_12_27-PM-06_01_07

Theory : eval!all


Home Index