Nuprl Lemma : fpf-dom_functionality

[A:Type]. ∀[B:A ⟶ Type]. ∀[eq1,eq2:EqDecider(A)]. ∀[f:a:A fp-> B[a]]. ∀[x:A].  x ∈ dom(f) x ∈ dom(f)


Proof




Definitions occuring in Statement :  fpf-dom: x ∈ dom(f) fpf: a:A fp-> B[a] deq: EqDecider(T) bool: 𝔹 uall: [x:A]. B[x] so_apply: x[s] function: x:A ⟶ B[x] universe: Type equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T fpf-dom: x ∈ dom(f) fpf: a:A fp-> B[a] pi1: fst(t) all: x:A. B[x] implies:  Q bool: 𝔹 unit: Unit it: btrue: tt uiff: uiff(P;Q) and: P ∧ Q uimplies: supposing a iff: ⇐⇒ Q prop: rev_implies:  Q true: True assert: b ifthenelse: if then else fi  bfalse: ff exists: x:A. B[x] or: P ∨ Q sq_type: SQType(T) guard: {T} bnot: ¬bb false: False not: ¬A so_lambda: λ2x.t[x] so_apply: x[s]
Lemmas referenced :  deq-member_wf bool_wf eqtt_to_assert assert-deq-member iff_imp_equal_bool btrue_wf true_wf l_member_wf assert_wf iff_wf eqff_to_assert equal_wf bool_cases_sqequal subtype_base_sq bool_subtype_base assert-bnot bfalse_wf false_wf fpf_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalHypSubstitution productElimination thin sqequalRule extract_by_obid isectElimination cumulativity hypothesisEquality hypothesis lambdaFormation unionElimination equalityElimination equalityTransitivity equalitySymmetry independent_isectElimination dependent_functionElimination independent_functionElimination independent_pairFormation natural_numberEquality addLevel impliesFunctionality because_Cache dependent_pairFormation promote_hyp instantiate voidElimination isect_memberEquality axiomEquality lambdaEquality applyEquality functionExtensionality functionEquality universeEquality

Latex:
\mforall{}[A:Type].  \mforall{}[B:A  {}\mrightarrow{}  Type].  \mforall{}[eq1,eq2:EqDecider(A)].  \mforall{}[f:a:A  fp->  B[a]].  \mforall{}[x:A].
    x  \mmember{}  dom(f)  =  x  \mmember{}  dom(f)



Date html generated: 2018_05_21-PM-09_17_30
Last ObjectModification: 2018_02_09-AM-10_16_32

Theory : finite!partial!functions


Home Index