Nuprl Lemma : fpf-dom_functionality
∀[A:Type]. ∀[B:A ⟶ Type]. ∀[eq1,eq2:EqDecider(A)]. ∀[f:a:A fp-> B[a]]. ∀[x:A].  x ∈ dom(f) = x ∈ dom(f)
Proof
Definitions occuring in Statement : 
fpf-dom: x ∈ dom(f), 
fpf: a:A fp-> B[a], 
deq: EqDecider(T), 
bool: 𝔹, 
uall: ∀[x:A]. B[x], 
so_apply: x[s], 
function: x:A ⟶ B[x], 
universe: Type, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
fpf-dom: x ∈ dom(f), 
fpf: a:A fp-> B[a], 
pi1: fst(t), 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
bool: 𝔹, 
unit: Unit, 
it: ⋅, 
btrue: tt, 
uiff: uiff(P;Q), 
and: P ∧ Q, 
uimplies: b supposing a, 
iff: P ⇐⇒ Q, 
prop: ℙ, 
rev_implies: P ⇐ Q, 
true: True, 
assert: ↑b, 
ifthenelse: if b then t else f fi , 
bfalse: ff, 
exists: ∃x:A. B[x], 
or: P ∨ Q, 
sq_type: SQType(T), 
guard: {T}, 
bnot: ¬bb, 
false: False, 
not: ¬A, 
so_lambda: λ2x.t[x], 
so_apply: x[s]
Lemmas referenced : 
deq-member_wf, 
bool_wf, 
eqtt_to_assert, 
assert-deq-member, 
iff_imp_equal_bool, 
btrue_wf, 
true_wf, 
l_member_wf, 
assert_wf, 
iff_wf, 
eqff_to_assert, 
equal_wf, 
bool_cases_sqequal, 
subtype_base_sq, 
bool_subtype_base, 
assert-bnot, 
bfalse_wf, 
false_wf, 
fpf_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalHypSubstitution, 
productElimination, 
thin, 
sqequalRule, 
extract_by_obid, 
isectElimination, 
cumulativity, 
hypothesisEquality, 
hypothesis, 
lambdaFormation, 
unionElimination, 
equalityElimination, 
equalityTransitivity, 
equalitySymmetry, 
independent_isectElimination, 
dependent_functionElimination, 
independent_functionElimination, 
independent_pairFormation, 
natural_numberEquality, 
addLevel, 
impliesFunctionality, 
because_Cache, 
dependent_pairFormation, 
promote_hyp, 
instantiate, 
voidElimination, 
isect_memberEquality, 
axiomEquality, 
lambdaEquality, 
applyEquality, 
functionExtensionality, 
functionEquality, 
universeEquality
Latex:
\mforall{}[A:Type].  \mforall{}[B:A  {}\mrightarrow{}  Type].  \mforall{}[eq1,eq2:EqDecider(A)].  \mforall{}[f:a:A  fp->  B[a]].  \mforall{}[x:A].
    x  \mmember{}  dom(f)  =  x  \mmember{}  dom(f)
Date html generated:
2018_05_21-PM-09_17_30
Last ObjectModification:
2018_02_09-AM-10_16_32
Theory : finite!partial!functions
Home
Index