Nuprl Lemma : fpf-join-list-dom
∀[A:Type]. ∀eq:EqDecider(A). ∀[B:A ⟶ Type]. ∀L:a:A fp-> B[a] List. ∀x:A.  (↑x ∈ dom(⊕(L)) ⇐⇒ (∃f∈L. ↑x ∈ dom(f)))
Proof
Definitions occuring in Statement : 
fpf-join-list: ⊕(L), 
fpf-dom: x ∈ dom(f), 
fpf: a:A fp-> B[a], 
l_exists: (∃x∈L. P[x]), 
list: T List, 
deq: EqDecider(T), 
assert: ↑b, 
uall: ∀[x:A]. B[x], 
so_apply: x[s], 
all: ∀x:A. B[x], 
iff: P ⇐⇒ Q, 
function: x:A ⟶ B[x], 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
all: ∀x:A. B[x], 
member: t ∈ T, 
so_lambda: λ2x.t[x], 
so_apply: x[s], 
subtype_rel: A ⊆r B, 
uimplies: b supposing a, 
top: Top, 
prop: ℙ, 
implies: P ⇒ Q, 
fpf-join-list: ⊕(L), 
fpf-empty: ⊗, 
fpf-dom: x ∈ dom(f), 
pi1: fst(t), 
assert: ↑b, 
ifthenelse: if b then t else f fi , 
bfalse: ff, 
iff: P ⇐⇒ Q, 
and: P ∧ Q, 
false: False, 
rev_implies: P ⇐ Q, 
or: P ∨ Q, 
guard: {T}
Lemmas referenced : 
list_induction, 
fpf_wf, 
all_wf, 
iff_wf, 
assert_wf, 
fpf-dom_wf, 
fpf-join-list_wf, 
top_wf, 
subtype_rel_list, 
subtype-fpf2, 
l_exists_wf, 
l_member_wf, 
list_wf, 
deq_wf, 
reduce_nil_lemma, 
deq_member_nil_lemma, 
false_wf, 
l_exists_nil, 
l_exists_wf_nil, 
l_exists_cons, 
cons_wf, 
or_wf, 
reduce_cons_lemma, 
fpf-join-dom, 
fpf-join_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
lambdaFormation, 
cut, 
thin, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
hypothesisEquality, 
sqequalRule, 
lambdaEquality, 
applyEquality, 
hypothesis, 
cumulativity, 
because_Cache, 
independent_isectElimination, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
setElimination, 
rename, 
setEquality, 
independent_functionElimination, 
dependent_functionElimination, 
functionEquality, 
universeEquality, 
introduction, 
independent_pairFormation, 
productElimination, 
independent_pairEquality, 
addLevel, 
allFunctionality, 
impliesFunctionality, 
unionElimination, 
inlFormation, 
inrFormation
Latex:
\mforall{}[A:Type]
    \mforall{}eq:EqDecider(A)
        \mforall{}[B:A  {}\mrightarrow{}  Type].  \mforall{}L:a:A  fp->  B[a]  List.  \mforall{}x:A.    (\muparrow{}x  \mmember{}  dom(\moplus{}(L))  \mLeftarrow{}{}\mRightarrow{}  (\mexists{}f\mmember{}L.  \muparrow{}x  \mmember{}  dom(f)))
Date html generated:
2018_05_21-PM-09_22_40
Last ObjectModification:
2018_02_09-AM-10_18_51
Theory : finite!partial!functions
Home
Index