Nuprl Lemma : fpf-sub-join-symmetry
∀[A:Type]. ∀[B:A ⟶ Type]. ∀[eq:EqDecider(A)]. ∀[f,g:a:A fp-> B[a]]. f ⊕ g ⊆ g ⊕ f supposing f || g
Proof
Definitions occuring in Statement :
fpf-join: f ⊕ g
,
fpf-compatible: f || g
,
fpf-sub: f ⊆ g
,
fpf: a:A fp-> B[a]
,
deq: EqDecider(T)
,
uimplies: b supposing a
,
uall: ∀[x:A]. B[x]
,
so_apply: x[s]
,
function: x:A ⟶ B[x]
,
universe: Type
Definitions unfolded in proof :
uall: ∀[x:A]. B[x]
,
member: t ∈ T
,
uimplies: b supposing a
,
fpf-sub: f ⊆ g
,
all: ∀x:A. B[x]
,
implies: P
⇒ Q
,
cand: A c∧ B
,
so_lambda: λ2x.t[x]
,
so_apply: x[s]
,
iff: P
⇐⇒ Q
,
and: P ∧ Q
,
rev_implies: P
⇐ Q
,
prop: ℙ
,
subtype_rel: A ⊆r B
,
top: Top
,
or: P ∨ Q
,
guard: {T}
,
bool: 𝔹
,
unit: Unit
,
it: ⋅
,
btrue: tt
,
uiff: uiff(P;Q)
,
ifthenelse: if b then t else f fi
,
fpf-compatible: f || g
,
bfalse: ff
,
exists: ∃x:A. B[x]
,
sq_type: SQType(T)
,
bnot: ¬bb
,
assert: ↑b
,
false: False
,
not: ¬A
Lemmas referenced :
fpf-join-dom,
assert_wf,
fpf-dom_wf,
fpf-join_wf,
top_wf,
subtype-fpf2,
fpf-sub_witness,
fpf-compatible_wf,
fpf_wf,
deq_wf,
bool_wf,
eqtt_to_assert,
eqff_to_assert,
equal_wf,
bool_cases_sqequal,
subtype_base_sq,
bool_subtype_base,
assert-bnot,
fpf-ap_wf,
equal-wf-T-base,
bnot_wf,
not_wf,
fpf-join-ap-sq,
uiff_transitivity,
assert_of_bnot
Rules used in proof :
sqequalSubstitution,
sqequalTransitivity,
computationStep,
sqequalReflexivity,
isect_memberFormation,
introduction,
cut,
lambdaFormation,
extract_by_obid,
sqequalHypSubstitution,
isectElimination,
thin,
hypothesisEquality,
sqequalRule,
lambdaEquality,
applyEquality,
functionExtensionality,
cumulativity,
dependent_functionElimination,
hypothesis,
productElimination,
independent_functionElimination,
independent_pairFormation,
because_Cache,
independent_isectElimination,
isect_memberEquality,
voidElimination,
voidEquality,
equalityTransitivity,
equalitySymmetry,
functionEquality,
universeEquality,
unionElimination,
inrFormation,
inlFormation,
equalityElimination,
dependent_pairFormation,
promote_hyp,
instantiate,
baseClosed
Latex:
\mforall{}[A:Type]. \mforall{}[B:A {}\mrightarrow{} Type]. \mforall{}[eq:EqDecider(A)]. \mforall{}[f,g:a:A fp-> B[a]]. f \moplus{} g \msubseteq{} g \moplus{} f supposing f || g
Date html generated:
2018_05_21-PM-09_23_14
Last ObjectModification:
2018_02_09-AM-10_19_12
Theory : finite!partial!functions
Home
Index