Nuprl Lemma : cantor-theorem-on-power-set
∀[T:Type]. (¬T ~ powerset(T))
This theorem is one of freek's list of 100 theorems
Proof
Definitions occuring in Statement : 
powerset: powerset(T), 
equipollent: A ~ B, 
uall: ∀[x:A]. B[x], 
not: ¬A, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
not: ¬A, 
implies: P ⇒ Q, 
false: False, 
equipollent: A ~ B, 
exists: ∃x:A. B[x], 
biject: Bij(A;B;f), 
and: P ∧ Q, 
surject: Surj(A;B;f), 
all: ∀x:A. B[x], 
squash: ↓T, 
prop: ℙ, 
bnot: ¬bb, 
ifthenelse: if b then t else f fi , 
true: True, 
subtype_rel: A ⊆r B, 
uimplies: b supposing a, 
guard: {T}, 
iff: P ⇐⇒ Q, 
rev_implies: P ⇐ Q, 
bool: 𝔹, 
unit: Unit, 
it: ⋅, 
btrue: tt, 
uiff: uiff(P;Q), 
bfalse: ff, 
or: P ∨ Q, 
sq_type: SQType(T), 
assert: ↑b, 
powerset: powerset(T)
Lemmas referenced : 
equipollent_wf, 
powerset_wf, 
bool_wf, 
bnot_wf, 
equal_wf, 
squash_wf, 
true_wf, 
iff_weakening_equal, 
eqtt_to_assert, 
btrue_neq_bfalse, 
equal-wf-base, 
eqff_to_assert, 
bool_cases_sqequal, 
subtype_base_sq, 
bool_subtype_base, 
assert-bnot, 
int_seg_wf, 
equipollent_functionality_wrt_equipollent2, 
function_functionality_wrt_equipollent_right, 
equipollent-two
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
lambdaFormation, 
thin, 
hypothesis, 
sqequalHypSubstitution, 
independent_functionElimination, 
voidElimination, 
extract_by_obid, 
isectElimination, 
cumulativity, 
hypothesisEquality, 
sqequalRule, 
lambdaEquality, 
dependent_functionElimination, 
because_Cache, 
universeEquality, 
functionEquality, 
productElimination, 
applyEquality, 
functionExtensionality, 
imageElimination, 
equalityTransitivity, 
equalitySymmetry, 
natural_numberEquality, 
imageMemberEquality, 
baseClosed, 
independent_isectElimination, 
unionElimination, 
equalityElimination, 
dependent_pairFormation, 
promote_hyp, 
instantiate
Latex:
\mforall{}[T:Type].  (\mneg{}T  \msim{}  powerset(T))
Date html generated:
2018_05_21-PM-08_36_26
Last ObjectModification:
2017_07_26-PM-06_00_58
Theory : general
Home
Index