Nuprl Lemma : combination_functionality

[A,B:Type].  ∀n,m:ℤ.  (A  Combination(n;A) Combination(m;B) supposing m ∈ ℤ)


Proof




Definitions occuring in Statement :  combination: Combination(n;T) equipollent: B uimplies: supposing a uall: [x:A]. B[x] all: x:A. B[x] implies:  Q int: universe: Type equal: t ∈ T
Definitions unfolded in proof :  prop: guard: {T} sq_type: SQType(T) subtype_rel: A ⊆B exists: x:A. B[x] equipollent: B member: t ∈ T uimplies: supposing a implies:  Q all: x:A. B[x] uall: [x:A]. B[x] biject: Bij(A;B;f) and: P ∧ Q surject: Surj(A;B;f) inject: Inj(A;B;f) rev_implies:  Q iff: ⇐⇒ Q true: True squash: T compose: g top: Top combination: Combination(n;T)
Lemmas referenced :  equipollent_wf equal-wf-base biject_wf int_subtype_base subtype_base_sq subtype_rel_wf combination_wf subtype_rel_self map_wf_combination biject-inverse equal_wf list_wf iff_weakening_equal true_wf squash_wf map_wf map-map top_wf subtype_rel_list map-id length_wf equal-wf-T-base no_repeats_wf
Rules used in proof :  universeEquality independent_functionElimination dependent_functionElimination intEquality instantiate sqequalRule applyLambdaEquality equalitySymmetry hyp_replacement independent_isectElimination because_Cache applyEquality functionExtensionality hypothesisEquality cumulativity isectElimination extract_by_obid lambdaEquality dependent_pairFormation productElimination sqequalHypSubstitution rename thin hypothesis axiomEquality introduction cut lambdaFormation isect_memberFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution independent_pairFormation baseClosed imageMemberEquality natural_numberEquality equalityTransitivity imageElimination voidEquality voidElimination isect_memberEquality setElimination productEquality dependent_set_memberEquality

Latex:
\mforall{}[A,B:Type].    \mforall{}n,m:\mBbbZ{}.    (A  \msim{}  B  {}\mRightarrow{}  Combination(n;A)  \msim{}  Combination(m;B)  supposing  n  =  m)



Date html generated: 2018_05_21-PM-08_08_13
Last ObjectModification: 2017_12_07-PM-06_24_23

Theory : general


Home Index