Nuprl Lemma : combination_functionality
∀[A,B:Type].  ∀n,m:ℤ.  (A ~ B ⇒ Combination(n;A) ~ Combination(m;B) supposing n = m ∈ ℤ)
Proof
Definitions occuring in Statement : 
combination: Combination(n;T), 
equipollent: A ~ B, 
uimplies: b supposing a, 
uall: ∀[x:A]. B[x], 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
int: ℤ, 
universe: Type, 
equal: s = t ∈ T
Definitions unfolded in proof : 
prop: ℙ, 
guard: {T}, 
sq_type: SQType(T), 
subtype_rel: A ⊆r B, 
exists: ∃x:A. B[x], 
equipollent: A ~ B, 
member: t ∈ T, 
uimplies: b supposing a, 
implies: P ⇒ Q, 
all: ∀x:A. B[x], 
uall: ∀[x:A]. B[x], 
biject: Bij(A;B;f), 
and: P ∧ Q, 
surject: Surj(A;B;f), 
inject: Inj(A;B;f), 
rev_implies: P ⇐ Q, 
iff: P ⇐⇒ Q, 
true: True, 
squash: ↓T, 
compose: f o g, 
top: Top, 
combination: Combination(n;T)
Lemmas referenced : 
equipollent_wf, 
equal-wf-base, 
biject_wf, 
int_subtype_base, 
subtype_base_sq, 
subtype_rel_wf, 
combination_wf, 
subtype_rel_self, 
map_wf_combination, 
biject-inverse, 
equal_wf, 
list_wf, 
iff_weakening_equal, 
true_wf, 
squash_wf, 
map_wf, 
map-map, 
top_wf, 
subtype_rel_list, 
map-id, 
length_wf, 
equal-wf-T-base, 
no_repeats_wf
Rules used in proof : 
universeEquality, 
independent_functionElimination, 
dependent_functionElimination, 
intEquality, 
instantiate, 
sqequalRule, 
applyLambdaEquality, 
equalitySymmetry, 
hyp_replacement, 
independent_isectElimination, 
because_Cache, 
applyEquality, 
functionExtensionality, 
hypothesisEquality, 
cumulativity, 
isectElimination, 
extract_by_obid, 
lambdaEquality, 
dependent_pairFormation, 
productElimination, 
sqequalHypSubstitution, 
rename, 
thin, 
hypothesis, 
axiomEquality, 
introduction, 
cut, 
lambdaFormation, 
isect_memberFormation, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution, 
independent_pairFormation, 
baseClosed, 
imageMemberEquality, 
natural_numberEquality, 
equalityTransitivity, 
imageElimination, 
voidEquality, 
voidElimination, 
isect_memberEquality, 
setElimination, 
productEquality, 
dependent_set_memberEquality
Latex:
\mforall{}[A,B:Type].    \mforall{}n,m:\mBbbZ{}.    (A  \msim{}  B  {}\mRightarrow{}  Combination(n;A)  \msim{}  Combination(m;B)  supposing  n  =  m)
Date html generated:
2018_05_21-PM-08_08_13
Last ObjectModification:
2017_12_07-PM-06_24_23
Theory : general
Home
Index