Nuprl Lemma : compat-append2
∀[T:Type]. ∀as,cs,bs,ds:T List.  (as @ bs || cs @ ds 
⇒ bs || ds supposing as = cs ∈ (T List))
Proof
Definitions occuring in Statement : 
compat: l1 || l2
, 
append: as @ bs
, 
list: T List
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
universe: Type
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
member: t ∈ T
, 
so_lambda: λ2x.t[x]
, 
implies: P 
⇒ Q
, 
prop: ℙ
, 
uimplies: b supposing a
, 
so_apply: x[s]
, 
append: as @ bs
, 
so_lambda: so_lambda(x,y,z.t[x; y; z])
, 
top: Top
, 
so_apply: x[s1;s2;s3]
, 
and: P ∧ Q
, 
squash: ↓T
, 
true: True
, 
subtype_rel: A ⊆r B
, 
not: ¬A
, 
false: False
, 
iff: P 
⇐⇒ Q
, 
guard: {T}
Lemmas referenced : 
list_induction, 
all_wf, 
list_wf, 
compat_wf, 
append_wf, 
equal_wf, 
list_ind_nil_lemma, 
and_wf, 
squash_wf, 
true_wf, 
equal-wf-base-T, 
nil_wf, 
cons_wf, 
null_nil_lemma, 
btrue_wf, 
null_wf3, 
subtype_rel_list, 
top_wf, 
null_cons_lemma, 
bfalse_wf, 
btrue_neq_bfalse, 
equal-wf-T-base, 
list_ind_cons_lemma, 
compat-cons, 
reduce_tl_cons_lemma, 
tl_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
lambdaFormation, 
cut, 
thin, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
hypothesisEquality, 
sqequalRule, 
lambdaEquality, 
cumulativity, 
hypothesis, 
because_Cache, 
functionEquality, 
isectEquality, 
independent_functionElimination, 
rename, 
dependent_functionElimination, 
universeEquality, 
axiomEquality, 
addLevel, 
hyp_replacement, 
equalitySymmetry, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
dependent_set_memberEquality, 
independent_pairFormation, 
equalityTransitivity, 
applyLambdaEquality, 
setElimination, 
productElimination, 
applyEquality, 
imageElimination, 
natural_numberEquality, 
imageMemberEquality, 
baseClosed, 
levelHypothesis, 
independent_isectElimination
Latex:
\mforall{}[T:Type].  \mforall{}as,cs,bs,ds:T  List.    (as  @  bs  ||  cs  @  ds  {}\mRightarrow{}  bs  ||  ds  supposing  as  =  cs)
Date html generated:
2018_05_21-PM-06_46_30
Last ObjectModification:
2017_07_26-PM-04_56_16
Theory : general
Home
Index