Nuprl Lemma : compat-append2

[T:Type]. ∀as,cs,bs,ds:T List.  (as bs || cs ds  bs || ds supposing as cs ∈ (T List))


Proof




Definitions occuring in Statement :  compat: l1 || l2 append: as bs list: List uimplies: supposing a uall: [x:A]. B[x] all: x:A. B[x] implies:  Q universe: Type equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] all: x:A. B[x] member: t ∈ T so_lambda: λ2x.t[x] implies:  Q prop: uimplies: supposing a so_apply: x[s] append: as bs so_lambda: so_lambda(x,y,z.t[x; y; z]) top: Top so_apply: x[s1;s2;s3] and: P ∧ Q squash: T true: True subtype_rel: A ⊆B not: ¬A false: False iff: ⇐⇒ Q guard: {T}
Lemmas referenced :  list_induction all_wf list_wf compat_wf append_wf equal_wf list_ind_nil_lemma and_wf squash_wf true_wf equal-wf-base-T nil_wf cons_wf null_nil_lemma btrue_wf null_wf3 subtype_rel_list top_wf null_cons_lemma bfalse_wf btrue_neq_bfalse equal-wf-T-base list_ind_cons_lemma compat-cons reduce_tl_cons_lemma tl_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation lambdaFormation cut thin introduction extract_by_obid sqequalHypSubstitution isectElimination hypothesisEquality sqequalRule lambdaEquality cumulativity hypothesis because_Cache functionEquality isectEquality independent_functionElimination rename dependent_functionElimination universeEquality axiomEquality addLevel hyp_replacement equalitySymmetry isect_memberEquality voidElimination voidEquality dependent_set_memberEquality independent_pairFormation equalityTransitivity applyLambdaEquality setElimination productElimination applyEquality imageElimination natural_numberEquality imageMemberEquality baseClosed levelHypothesis independent_isectElimination

Latex:
\mforall{}[T:Type].  \mforall{}as,cs,bs,ds:T  List.    (as  @  bs  ||  cs  @  ds  {}\mRightarrow{}  bs  ||  ds  supposing  as  =  cs)



Date html generated: 2018_05_21-PM-06_46_30
Last ObjectModification: 2017_07_26-PM-04_56_16

Theory : general


Home Index