Nuprl Lemma : finite-type-union

[A,B:Type].  (finite-type(A)  finite-type(B)  finite-type(A B))


Proof




Definitions occuring in Statement :  finite-type: finite-type(T) uall: [x:A]. B[x] implies:  Q union: left right universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] implies:  Q member: t ∈ T iff: ⇐⇒ Q and: P ∧ Q rev_implies:  Q exists: x:A. B[x] all: x:A. B[x] prop: so_lambda: λ2x.t[x] so_apply: x[s] or: P ∨ Q cand: c∧ B guard: {T}
Lemmas referenced :  finite-type-iff-list append_wf map_wf member_append member_map l_member_wf or_wf exists_wf and_wf equal_wf all_wf finite-type_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation lambdaFormation cut lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis productElimination independent_functionElimination unionEquality dependent_pairFormation lambdaEquality inlEquality inrEquality because_Cache dependent_functionElimination addLevel orFunctionality sqequalRule universeEquality unionElimination inlFormation independent_pairFormation inrFormation

Latex:
\mforall{}[A,B:Type].    (finite-type(A)  {}\mRightarrow{}  finite-type(B)  {}\mRightarrow{}  finite-type(A  +  B))



Date html generated: 2016_05_15-PM-04_26_24
Last ObjectModification: 2015_12_27-PM-02_51_16

Theory : general


Home Index