Nuprl Lemma : fun-connected-tree
∀[T:Type]
  ∀f:T ⟶ T
    ∀x,y:T.  (x is f*(y) 
⇒ (∀z:T. (x is f*(z) 
⇒ (z is f*(y) ∨ y is f*(z))))) 
    supposing ∀a,b:T.  (((f a) = (f b) ∈ T) 
⇒ (¬((f a) = a ∈ T)) 
⇒ (¬((f b) = b ∈ T)) 
⇒ (a = b ∈ T))
Proof
Definitions occuring in Statement : 
fun-connected: y is f*(x)
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
not: ¬A
, 
implies: P 
⇒ Q
, 
or: P ∨ Q
, 
apply: f a
, 
function: x:A ⟶ B[x]
, 
universe: Type
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
uimplies: b supposing a
, 
member: t ∈ T
, 
implies: P 
⇒ Q
, 
prop: ℙ
, 
so_lambda: λ2x y.t[x; y]
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
so_apply: x[s1;s2]
, 
guard: {T}
, 
or: P ∨ Q
, 
not: ¬A
, 
false: False
, 
fun-connected: y is f*(x)
, 
exists: ∃x:A. B[x]
, 
cons: [a / b]
, 
fun-path: y=f*(x) via L
, 
select: L[n]
, 
nil: []
, 
it: ⋅
, 
top: Top
, 
subtract: n - m
, 
and: P ∧ Q
, 
less_than: a < b
, 
squash: ↓T
, 
less_than': less_than'(a;b)
, 
uiff: uiff(P;Q)
, 
decidable: Dec(P)
, 
true: True
, 
subtype_rel: A ⊆r B
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
Lemmas referenced : 
not_wf, 
equal_wf, 
fun-connected-induction, 
all_wf, 
fun-connected_wf, 
or_wf, 
list-cases, 
product_subtype_list, 
length_of_nil_lemma, 
stuck-spread, 
base_wf, 
fun-path-cons, 
decidable__lt, 
length_wf, 
and_wf, 
squash_wf, 
true_wf, 
fun-path_wf, 
fun-connected_transitivity, 
fun-connected_weakening, 
strict-fun-connected-step, 
iff_weakening_equal, 
strict-fun-connected_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
lambdaFormation, 
cut, 
introduction, 
sqequalRule, 
sqequalHypSubstitution, 
lambdaEquality, 
dependent_functionElimination, 
thin, 
hypothesisEquality, 
axiomEquality, 
hypothesis, 
extract_by_obid, 
isectElimination, 
cumulativity, 
applyEquality, 
functionExtensionality, 
rename, 
functionEquality, 
independent_functionElimination, 
inrFormation, 
because_Cache, 
voidElimination, 
universeEquality, 
productElimination, 
unionElimination, 
promote_hyp, 
hypothesis_subsumption, 
baseClosed, 
independent_isectElimination, 
isect_memberEquality, 
voidEquality, 
imageElimination, 
natural_numberEquality, 
hyp_replacement, 
equalitySymmetry, 
applyLambdaEquality, 
equalityTransitivity, 
dependent_set_memberEquality, 
independent_pairFormation, 
setElimination, 
instantiate, 
imageMemberEquality, 
dependent_pairFormation, 
inlFormation
Latex:
\mforall{}[T:Type]
    \mforall{}f:T  {}\mrightarrow{}  T
        \mforall{}x,y:T.    (x  is  f*(y)  {}\mRightarrow{}  (\mforall{}z:T.  (x  is  f*(z)  {}\mRightarrow{}  (z  is  f*(y)  \mvee{}  y  is  f*(z))))) 
        supposing  \mforall{}a,b:T.    (((f  a)  =  (f  b))  {}\mRightarrow{}  (\mneg{}((f  a)  =  a))  {}\mRightarrow{}  (\mneg{}((f  b)  =  b))  {}\mRightarrow{}  (a  =  b))
Date html generated:
2018_05_21-PM-07_45_51
Last ObjectModification:
2017_07_26-PM-05_23_23
Theory : general
Home
Index