Nuprl Lemma : fun-connected-tree

[T:Type]
  ∀f:T ⟶ T
    ∀x,y:T.  (x is f*(y)  (∀z:T. (x is f*(z)  (z is f*(y) ∨ is f*(z))))) 
    supposing ∀a,b:T.  (((f a) (f b) ∈ T)  ((f a) a ∈ T))  ((f b) b ∈ T))  (a b ∈ T))


Proof




Definitions occuring in Statement :  fun-connected: is f*(x) uimplies: supposing a uall: [x:A]. B[x] all: x:A. B[x] not: ¬A implies:  Q or: P ∨ Q apply: a function: x:A ⟶ B[x] universe: Type equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] all: x:A. B[x] uimplies: supposing a member: t ∈ T implies:  Q prop: so_lambda: λ2y.t[x; y] so_lambda: λ2x.t[x] so_apply: x[s] so_apply: x[s1;s2] guard: {T} or: P ∨ Q not: ¬A false: False fun-connected: is f*(x) exists: x:A. B[x] cons: [a b] fun-path: y=f*(x) via L select: L[n] nil: [] it: top: Top subtract: m and: P ∧ Q less_than: a < b squash: T less_than': less_than'(a;b) uiff: uiff(P;Q) decidable: Dec(P) true: True subtype_rel: A ⊆B iff: ⇐⇒ Q rev_implies:  Q
Lemmas referenced :  not_wf equal_wf fun-connected-induction all_wf fun-connected_wf or_wf list-cases product_subtype_list length_of_nil_lemma stuck-spread base_wf fun-path-cons decidable__lt length_wf and_wf squash_wf true_wf fun-path_wf fun-connected_transitivity fun-connected_weakening strict-fun-connected-step iff_weakening_equal strict-fun-connected_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation lambdaFormation cut introduction sqequalRule sqequalHypSubstitution lambdaEquality dependent_functionElimination thin hypothesisEquality axiomEquality hypothesis extract_by_obid isectElimination cumulativity applyEquality functionExtensionality rename functionEquality independent_functionElimination inrFormation because_Cache voidElimination universeEquality productElimination unionElimination promote_hyp hypothesis_subsumption baseClosed independent_isectElimination isect_memberEquality voidEquality imageElimination natural_numberEquality hyp_replacement equalitySymmetry applyLambdaEquality equalityTransitivity dependent_set_memberEquality independent_pairFormation setElimination instantiate imageMemberEquality dependent_pairFormation inlFormation

Latex:
\mforall{}[T:Type]
    \mforall{}f:T  {}\mrightarrow{}  T
        \mforall{}x,y:T.    (x  is  f*(y)  {}\mRightarrow{}  (\mforall{}z:T.  (x  is  f*(z)  {}\mRightarrow{}  (z  is  f*(y)  \mvee{}  y  is  f*(z))))) 
        supposing  \mforall{}a,b:T.    (((f  a)  =  (f  b))  {}\mRightarrow{}  (\mneg{}((f  a)  =  a))  {}\mRightarrow{}  (\mneg{}((f  b)  =  b))  {}\mRightarrow{}  (a  =  b))



Date html generated: 2018_05_21-PM-07_45_51
Last ObjectModification: 2017_07_26-PM-05_23_23

Theory : general


Home Index