Nuprl Lemma : isl-ite

[x:𝔹]. ∀[a,b:Top Top].  (isl(if then else fi (isl(a) ∧b x) ∨b(isl(b) ∧b bx)))


Proof




Definitions occuring in Statement :  bor: p ∨bq band: p ∧b q bnot: ¬bb ifthenelse: if then else fi  isl: isl(x) bool: 𝔹 uall: [x:A]. B[x] top: Top union: left right sqequal: t
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T all: x:A. B[x] implies:  Q bool: 𝔹 unit: Unit it: btrue: tt uiff: uiff(P;Q) and: P ∧ Q uimplies: supposing a ifthenelse: if then else fi  bnot: ¬bb squash: T prop: band: p ∧b q bfalse: ff true: True subtype_rel: A ⊆B guard: {T} iff: ⇐⇒ Q rev_implies:  Q sq_type: SQType(T) exists: x:A. B[x] or: P ∨ Q assert: b false: False isl: isl(x) bor: p ∨bq
Lemmas referenced :  bool_wf eqtt_to_assert subtype_base_sq bool_subtype_base equal_wf squash_wf true_wf bor_wf isl_wf top_wf band_ff_simp iff_weakening_equal band_tt_simp bfalse_wf bor_ff_simp eqff_to_assert bool_cases_sqequal assert-bnot
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut hypothesisEquality thin extract_by_obid hypothesis lambdaFormation sqequalHypSubstitution unionElimination equalityElimination isectElimination productElimination independent_isectElimination sqequalRule instantiate cumulativity equalitySymmetry applyEquality lambdaEquality imageElimination equalityTransitivity universeEquality because_Cache dependent_functionElimination independent_functionElimination natural_numberEquality imageMemberEquality baseClosed sqequalAxiom unionEquality isect_memberEquality dependent_pairFormation promote_hyp voidElimination

Latex:
\mforall{}[x:\mBbbB{}].  \mforall{}[a,b:Top  +  Top].    (isl(if  x  then  a  else  b  fi  )  \msim{}  (isl(a)  \mwedge{}\msubb{}  x)  \mvee{}\msubb{}(isl(b)  \mwedge{}\msubb{}  (\mneg{}\msubb{}x)))



Date html generated: 2017_10_01-AM-09_12_39
Last ObjectModification: 2017_07_26-PM-04_48_17

Theory : general


Home Index