Nuprl Lemma : isl-ite
∀[x:𝔹]. ∀[a,b:Top + Top].  (isl(if x then a else b fi ) ~ (isl(a) ∧b x) ∨b(isl(b) ∧b (¬bx)))
Proof
Definitions occuring in Statement : 
bor: p ∨bq
, 
band: p ∧b q
, 
bnot: ¬bb
, 
ifthenelse: if b then t else f fi 
, 
isl: isl(x)
, 
bool: 𝔹
, 
uall: ∀[x:A]. B[x]
, 
top: Top
, 
union: left + right
, 
sqequal: s ~ t
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
bool: 𝔹
, 
unit: Unit
, 
it: ⋅
, 
btrue: tt
, 
uiff: uiff(P;Q)
, 
and: P ∧ Q
, 
uimplies: b supposing a
, 
ifthenelse: if b then t else f fi 
, 
bnot: ¬bb
, 
squash: ↓T
, 
prop: ℙ
, 
band: p ∧b q
, 
bfalse: ff
, 
true: True
, 
subtype_rel: A ⊆r B
, 
guard: {T}
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
sq_type: SQType(T)
, 
exists: ∃x:A. B[x]
, 
or: P ∨ Q
, 
assert: ↑b
, 
false: False
, 
isl: isl(x)
, 
bor: p ∨bq
Lemmas referenced : 
bool_wf, 
eqtt_to_assert, 
subtype_base_sq, 
bool_subtype_base, 
equal_wf, 
squash_wf, 
true_wf, 
bor_wf, 
isl_wf, 
top_wf, 
band_ff_simp, 
iff_weakening_equal, 
band_tt_simp, 
bfalse_wf, 
bor_ff_simp, 
eqff_to_assert, 
bool_cases_sqequal, 
assert-bnot
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
hypothesisEquality, 
thin, 
extract_by_obid, 
hypothesis, 
lambdaFormation, 
sqequalHypSubstitution, 
unionElimination, 
equalityElimination, 
isectElimination, 
productElimination, 
independent_isectElimination, 
sqequalRule, 
instantiate, 
cumulativity, 
equalitySymmetry, 
applyEquality, 
lambdaEquality, 
imageElimination, 
equalityTransitivity, 
universeEquality, 
because_Cache, 
dependent_functionElimination, 
independent_functionElimination, 
natural_numberEquality, 
imageMemberEquality, 
baseClosed, 
sqequalAxiom, 
unionEquality, 
isect_memberEquality, 
dependent_pairFormation, 
promote_hyp, 
voidElimination
Latex:
\mforall{}[x:\mBbbB{}].  \mforall{}[a,b:Top  +  Top].    (isl(if  x  then  a  else  b  fi  )  \msim{}  (isl(a)  \mwedge{}\msubb{}  x)  \mvee{}\msubb{}(isl(b)  \mwedge{}\msubb{}  (\mneg{}\msubb{}x)))
Date html generated:
2017_10_01-AM-09_12_39
Last ObjectModification:
2017_07_26-PM-04_48_17
Theory : general
Home
Index