Nuprl Lemma : l-all-iff
∀[T:Type]. ∀L:T List. ∀[P:{x:T| (x ∈ L)}  ⟶ ℙ]. (∀x∈L.P[x] 
⇐⇒ (∀x∈L.P[x]))
Proof
Definitions occuring in Statement : 
l-all: ∀x∈L.P[x]
, 
l_all: (∀x∈L.P[x])
, 
l_member: (x ∈ l)
, 
list: T List
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
so_apply: x[s]
, 
all: ∀x:A. B[x]
, 
iff: P 
⇐⇒ Q
, 
set: {x:A| B[x]} 
, 
function: x:A ⟶ B[x]
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
member: t ∈ T
, 
so_lambda: λ2x.t[x]
, 
prop: ℙ
, 
so_apply: x[s]
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
implies: P 
⇒ Q
, 
and: P ∧ Q
, 
l-all: ∀x∈L.P[x]
, 
top: Top
, 
true: True
, 
subtype_rel: A ⊆r B
, 
uimplies: b supposing a
, 
not: ¬A
, 
false: False
Lemmas referenced : 
list_induction, 
uall_wf, 
iff_wf, 
l-all_wf, 
l_member_wf, 
l_all_wf2, 
list_wf, 
reduce_nil_lemma, 
l_all_nil, 
true_wf, 
nil_wf, 
null_nil_lemma, 
btrue_wf, 
member-implies-null-eq-bfalse, 
btrue_neq_bfalse, 
reduce_cons_lemma, 
subtype_rel_self, 
l_all_cons, 
cons_wf, 
list-subtype
Rules used in proof : 
cut, 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
lambdaFormation, 
thin, 
instantiate, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
cumulativity, 
hypothesisEquality, 
sqequalRule, 
lambdaEquality, 
functionEquality, 
universeEquality, 
applyEquality, 
setElimination, 
rename, 
hypothesis, 
setEquality, 
because_Cache, 
independent_functionElimination, 
dependent_functionElimination, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
independent_pairFormation, 
natural_numberEquality, 
independent_isectElimination, 
equalityTransitivity, 
equalitySymmetry, 
productElimination, 
productEquality, 
addLevel
Latex:
\mforall{}[T:Type].  \mforall{}L:T  List.  \mforall{}[P:\{x:T|  (x  \mmember{}  L)\}    {}\mrightarrow{}  \mBbbP{}].  (\mforall{}x\mmember{}L.P[x]  \mLeftarrow{}{}\mRightarrow{}  (\mforall{}x\mmember{}L.P[x]))
Date html generated:
2019_10_15-AM-11_08_59
Last ObjectModification:
2018_08_25-PM-00_08_55
Theory : general
Home
Index