Nuprl Lemma : list-eq-set-type

[T:Type]. ∀[P:T ⟶ ℙ]. ∀[A,B:T List].
  (A B ∈ ({x:T| P[x]}  List)) supposing ((∀i:ℕ||A||. P[A[i]]) and (A B ∈ (T List)))


Proof




Definitions occuring in Statement :  select: L[n] length: ||as|| list: List int_seg: {i..j-} uimplies: supposing a uall: [x:A]. B[x] prop: so_apply: x[s] all: x:A. B[x] set: {x:A| B[x]}  function: x:A ⟶ B[x] natural_number: $n universe: Type equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a so_apply: x[s] subtype_rel: A ⊆B so_lambda: λ2x.t[x] l_all: (∀x∈L.P[x]) all: x:A. B[x] prop: int_seg: {i..j-} guard: {T} lelt: i ≤ j < k and: P ∧ Q decidable: Dec(P) or: P ∨ Q satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False implies:  Q not: ¬A top: Top less_than: a < b squash: T
Lemmas referenced :  list_wf equal_wf int_formula_prop_less_lemma intformless_wf decidable__lt int_formula_prop_wf int_term_value_var_lemma int_term_value_constant_lemma int_formula_prop_le_lemma int_formula_prop_not_lemma int_formula_prop_and_lemma itermVar_wf itermConstant_wf intformle_wf intformnot_wf intformand_wf satisfiable-full-omega-tt decidable__le int_seg_properties select_wf length_wf int_seg_wf all_wf list-set-type2 strong-subtype-self strong-subtype-set3 strong-subtype-equal-lists
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut lemma_by_obid sqequalHypSubstitution isectElimination thin setEquality hypothesisEquality applyEquality hypothesis because_Cache sqequalRule independent_isectElimination lambdaEquality natural_numberEquality cumulativity setElimination rename productElimination dependent_functionElimination unionElimination dependent_pairFormation int_eqEquality intEquality isect_memberEquality voidElimination voidEquality independent_pairFormation computeAll imageElimination axiomEquality equalityTransitivity equalitySymmetry functionEquality universeEquality

Latex:
\mforall{}[T:Type].  \mforall{}[P:T  {}\mrightarrow{}  \mBbbP{}].  \mforall{}[A,B:T  List].    (A  =  B)  supposing  ((\mforall{}i:\mBbbN{}||A||.  P[A[i]])  and  (A  =  B))



Date html generated: 2016_05_15-PM-04_10_32
Last ObjectModification: 2016_01_16-AM-11_05_44

Theory : general


Home Index