Nuprl Lemma : list_split_one_one
∀[T:Type]. ∀[f:(T List) ⟶ 𝔹]. ∀[X,Y:T List].
  X = Y ∈ (T List) supposing list_split(f;X) = list_split(f;Y) ∈ (T List List × (T List))
Proof
Definitions occuring in Statement : 
list_split: list_split(f;L)
, 
list: T List
, 
bool: 𝔹
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
function: x:A ⟶ B[x]
, 
product: x:A × B[x]
, 
universe: Type
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
so_lambda: λ2x.t[x]
, 
prop: ℙ
, 
so_apply: x[s]
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
subtype_rel: A ⊆r B
, 
top: Top
, 
squash: ↓T
, 
true: True
, 
guard: {T}
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
rev_implies: P 
⇐ Q
, 
pi2: snd(t)
Lemmas referenced : 
list_split_inverse, 
list_split_wf, 
list_wf, 
set_wf, 
is_list_splitting_wf, 
pi1_wf_top, 
subtype_rel_product, 
top_wf, 
equal_wf, 
pi2_wf, 
squash_wf, 
true_wf, 
pair_eta_rw, 
iff_weakening_equal, 
bool_wf, 
append_wf, 
concat_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
cumulativity, 
functionExtensionality, 
applyEquality, 
hypothesis, 
productEquality, 
sqequalRule, 
lambdaEquality, 
spreadEquality, 
productElimination, 
independent_pairEquality, 
lambdaFormation, 
setElimination, 
rename, 
because_Cache, 
independent_isectElimination, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
equalityTransitivity, 
equalitySymmetry, 
dependent_functionElimination, 
independent_functionElimination, 
imageElimination, 
natural_numberEquality, 
imageMemberEquality, 
baseClosed, 
universeEquality, 
setEquality, 
axiomEquality, 
functionEquality
Latex:
\mforall{}[T:Type].  \mforall{}[f:(T  List)  {}\mrightarrow{}  \mBbbB{}].  \mforall{}[X,Y:T  List].    X  =  Y  supposing  list\_split(f;X)  =  list\_split(f;Y)
Date html generated:
2018_05_21-PM-08_05_37
Last ObjectModification:
2017_07_26-PM-05_41_36
Theory : general
Home
Index