Nuprl Lemma : list_split_one_one

[T:Type]. ∀[f:(T List) ⟶ 𝔹]. ∀[X,Y:T List].
  Y ∈ (T List) supposing list_split(f;X) list_split(f;Y) ∈ (T List List × (T List))


Proof




Definitions occuring in Statement :  list_split: list_split(f;L) list: List bool: 𝔹 uimplies: supposing a uall: [x:A]. B[x] function: x:A ⟶ B[x] product: x:A × B[x] universe: Type equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a so_lambda: λ2x.t[x] prop: so_apply: x[s] all: x:A. B[x] implies:  Q subtype_rel: A ⊆B top: Top squash: T true: True guard: {T} iff: ⇐⇒ Q and: P ∧ Q rev_implies:  Q pi2: snd(t)
Lemmas referenced :  list_split_inverse list_split_wf list_wf set_wf is_list_splitting_wf pi1_wf_top subtype_rel_product top_wf equal_wf pi2_wf squash_wf true_wf pair_eta_rw iff_weakening_equal bool_wf append_wf concat_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality cumulativity functionExtensionality applyEquality hypothesis productEquality sqequalRule lambdaEquality spreadEquality productElimination independent_pairEquality lambdaFormation setElimination rename because_Cache independent_isectElimination isect_memberEquality voidElimination voidEquality equalityTransitivity equalitySymmetry dependent_functionElimination independent_functionElimination imageElimination natural_numberEquality imageMemberEquality baseClosed universeEquality setEquality axiomEquality functionEquality

Latex:
\mforall{}[T:Type].  \mforall{}[f:(T  List)  {}\mrightarrow{}  \mBbbB{}].  \mforall{}[X,Y:T  List].    X  =  Y  supposing  list\_split(f;X)  =  list\_split(f;Y)



Date html generated: 2018_05_21-PM-08_05_37
Last ObjectModification: 2017_07_26-PM-05_41_36

Theory : general


Home Index