Nuprl Lemma : member-merge
∀[T:Type]. ∀bs,as:T List. ∀x:T.  ((x ∈ merge(as;bs)) 
⇐⇒ (x ∈ as) ∨ (x ∈ bs)) supposing T ⊆r ℤ
Proof
Definitions occuring in Statement : 
merge: merge(as;bs)
, 
l_member: (x ∈ l)
, 
list: T List
, 
uimplies: b supposing a
, 
subtype_rel: A ⊆r B
, 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
iff: P 
⇐⇒ Q
, 
or: P ∨ Q
, 
int: ℤ
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
uimplies: b supposing a
, 
member: t ∈ T
, 
subtype_rel: A ⊆r B
, 
all: ∀x:A. B[x]
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
implies: P 
⇒ Q
, 
merge: merge(as;bs)
, 
top: Top
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
or: P ∨ Q
, 
prop: ℙ
, 
rev_implies: P 
⇐ Q
, 
false: False
, 
guard: {T}
Lemmas referenced : 
list_induction, 
all_wf, 
list_wf, 
iff_wf, 
l_member_wf, 
merge_wf, 
or_wf, 
reduce_nil_lemma, 
false_wf, 
nil_member, 
nil_wf, 
reduce_cons_lemma, 
equal_wf, 
cons_member, 
cons_wf, 
member-s-insert, 
s-insert_wf, 
subtype_rel_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
cut, 
introduction, 
sqequalRule, 
axiomEquality, 
hypothesis, 
thin, 
rename, 
lambdaFormation, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
hypothesisEquality, 
lambdaEquality, 
independent_isectElimination, 
independent_functionElimination, 
dependent_functionElimination, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
independent_pairFormation, 
inlFormation, 
unionElimination, 
because_Cache, 
addLevel, 
allFunctionality, 
productElimination, 
impliesFunctionality, 
orFunctionality, 
inrFormation, 
cumulativity, 
intEquality, 
universeEquality
Latex:
\mforall{}[T:Type].  \mforall{}bs,as:T  List.  \mforall{}x:T.    ((x  \mmember{}  merge(as;bs))  \mLeftarrow{}{}\mRightarrow{}  (x  \mmember{}  as)  \mvee{}  (x  \mmember{}  bs))  supposing  T  \msubseteq{}r  \mBbbZ{}
Date html generated:
2016_05_15-PM-03_52_31
Last ObjectModification:
2015_12_27-PM-01_23_47
Theory : general
Home
Index