Nuprl Lemma : oob-getright_wf

[B,A:Type]. ∀[x:{x:one_or_both(A;B)| ↑oob-hasright(x)} ].  (oob-getright(x) ∈ B)


Proof




Definitions occuring in Statement :  oob-getright: oob-getright(x) oob-hasright: oob-hasright(x) one_or_both: one_or_both(A;B) assert: b uall: [x:A]. B[x] member: t ∈ T set: {x:A| B[x]}  universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T oob-getright: oob-getright(x) all: x:A. B[x] implies:  Q bool: 𝔹 unit: Unit it: btrue: tt uiff: uiff(P;Q) and: P ∧ Q uimplies: supposing a ifthenelse: if then else fi  bfalse: ff so_lambda: λ2x.t[x] so_apply: x[s] prop: oob-hasright: oob-hasright(x) or: P ∨ Q not: ¬A false: False
Lemmas referenced :  oobright?_wf bool_wf eqtt_to_assert oobright-rval_wf uiff_transitivity equal-wf-T-base assert_wf bnot_wf not_wf eqff_to_assert assert_of_bnot pi2_wf oobboth-bval_wf equal_wf set_wf one_or_both_wf oob-hasright_wf assert_of_bor oobboth?_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut setElimination thin rename sqequalRule extract_by_obid sqequalHypSubstitution isectElimination cumulativity hypothesisEquality hypothesis lambdaFormation unionElimination equalityElimination because_Cache productElimination independent_isectElimination equalityTransitivity equalitySymmetry baseClosed independent_functionElimination lambdaEquality dependent_functionElimination axiomEquality isect_memberEquality universeEquality voidElimination

Latex:
\mforall{}[B,A:Type].  \mforall{}[x:\{x:one\_or\_both(A;B)|  \muparrow{}oob-hasright(x)\}  ].    (oob-getright(x)  \mmember{}  B)



Date html generated: 2018_05_21-PM-08_00_12
Last ObjectModification: 2017_07_26-PM-05_37_03

Theory : general


Home Index