Nuprl Lemma : order-type-less-maximal

x:WFTRO{i:l}(). (x order-type-less() max-WO{i:l}())


Proof




Definitions occuring in Statement :  max-WO: max-WO{i:l}() WFTRO: WFTRO{i:l}() order-type-less: order-type-less() infix_ap: y all: x:A. B[x]
Definitions unfolded in proof :  max-WO: max-WO{i:l}() all: x:A. B[x] member: t ∈ T WFTRO: WFTRO{i:l}() order-type-less: order-type-less() infix_ap: y spreadn: spread3 WFO: WFO{i:l}() DCC: DCC(T;<) not: ¬A implies:  Q false: False prop: uall: [x:A]. B[x] so_lambda: λ2x.t[x] nat: ge: i ≥  decidable: Dec(P) or: P ∨ Q uimplies: supposing a satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] top: Top and: P ∧ Q subtype_rel: A ⊆B so_apply: x[s] pi1: fst(t) order-preserving: order-preserving(A;B;a1,a2.R1[a1; a2];b1,b2.R2[b1; b2];f) cand: c∧ B trans: Trans(T;x,y.E[x; y])
Lemmas referenced :  WFTRO_wf equal_wf nat_wf all_wf infix_ap_wf nat_properties decidable__le satisfiable-full-omega-tt intformand_wf intformnot_wf intformle_wf itermConstant_wf itermAdd_wf itermVar_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_add_lemma int_term_value_var_lemma int_formula_prop_wf le_wf pi1_wf_top DCC_wf exists_wf set_wf subtype_rel_product top_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut introduction extract_by_obid hypothesis sqequalHypSubstitution productElimination thin sqequalRule dependent_functionElimination lambdaEquality because_Cache isectElimination equalityTransitivity equalitySymmetry hypothesisEquality independent_functionElimination voidElimination instantiate cumulativity universeEquality functionExtensionality applyEquality dependent_set_memberEquality addEquality setElimination rename natural_numberEquality unionElimination independent_isectElimination dependent_pairFormation int_eqEquality intEquality isect_memberEquality voidEquality independent_pairFormation computeAll productEquality independent_pairEquality functionEquality dependent_pairEquality setEquality addLevel hyp_replacement levelHypothesis

Latex:
\mforall{}x:WFTRO\{i:l\}().  (x  order-type-less()  max-WO\{i:l\}())



Date html generated: 2018_05_21-PM-07_15_03
Last ObjectModification: 2017_07_26-PM-05_03_46

Theory : general


Home Index