Nuprl Lemma : pair_wf_l_member

[T:Type]. ∀[L:T List]. ∀[x:T]. ∀[i:ℕ||L||].  <i, Ax, Ax> ∈ (x ∈ L) supposing L[i] x ∈ T


Proof




Definitions occuring in Statement :  l_member: (x ∈ l) select: L[n] length: ||as|| list: List int_seg: {i..j-} uimplies: supposing a uall: [x:A]. B[x] member: t ∈ T pair: <a, b> natural_number: $n universe: Type equal: t ∈ T axiom: Ax
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a l_member: (x ∈ l) exists: x:A. B[x] subtype_rel: A ⊆B le: A ≤ B and: P ∧ Q less_than': less_than'(a;b) false: False not: ¬A implies:  Q prop: cand: c∧ B int_seg: {i..j-} guard: {T} lelt: i ≤ j < k all: x:A. B[x] decidable: Dec(P) or: P ∨ Q less_than: a < b squash: T satisfiable_int_formula: satisfiable_int_formula(fmla) top: Top nat: ge: i ≥ 
Lemmas referenced :  int_seg_subtype_nat length_wf false_wf member-less_than int_seg_properties decidable__lt satisfiable-full-omega-tt intformand_wf intformnot_wf intformless_wf itermVar_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_less_lemma int_term_value_var_lemma int_formula_prop_wf less_than_wf equal_wf select_wf nat_properties decidable__le intformle_wf itermConstant_wf int_formula_prop_le_lemma int_term_value_constant_lemma int_seg_wf list_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule dependent_pairEquality hypothesisEquality applyEquality extract_by_obid sqequalHypSubstitution isectElimination thin natural_numberEquality cumulativity hypothesis independent_isectElimination independent_pairFormation lambdaFormation independent_pairEquality setElimination rename productElimination dependent_functionElimination unionElimination imageElimination dependent_pairFormation lambdaEquality int_eqEquality intEquality isect_memberEquality voidElimination voidEquality computeAll axiomEquality equalitySymmetry productEquality because_Cache equalityTransitivity universeEquality

Latex:
\mforall{}[T:Type].  \mforall{}[L:T  List].  \mforall{}[x:T].  \mforall{}[i:\mBbbN{}||L||].    <i,  Ax,  Ax>  \mmember{}  (x  \mmember{}  L)  supposing  L[i]  =  x



Date html generated: 2017_10_01-AM-09_15_34
Last ObjectModification: 2017_07_26-PM-04_50_17

Theory : general


Home Index