Nuprl Lemma : square-board-subtype
∀[n:ℕ]. ∀[T,S:Type].  square-board(n;T) ⊆r square-board(n;S) supposing T ⊆r S
Proof
Definitions occuring in Statement : 
square-board: square-board(n;T)
, 
nat: ℕ
, 
uimplies: b supposing a
, 
subtype_rel: A ⊆r B
, 
uall: ∀[x:A]. B[x]
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
square-board: square-board(n;T)
, 
so_lambda: λ2x.t[x]
, 
prop: ℙ
, 
and: P ∧ Q
, 
nat: ℕ
, 
int_seg: {i..j-}
, 
guard: {T}
, 
ge: i ≥ j 
, 
lelt: i ≤ j < k
, 
all: ∀x:A. B[x]
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
, 
false: False
, 
implies: P 
⇒ Q
, 
not: ¬A
, 
top: Top
, 
so_apply: x[s]
, 
subtype_rel: A ⊆r B
Lemmas referenced : 
subtype_rel_sets, 
list_wf, 
equal_wf, 
length_wf, 
all_wf, 
int_seg_wf, 
select_wf, 
int_seg_properties, 
nat_properties, 
decidable__le, 
satisfiable-full-omega-tt, 
intformand_wf, 
intformnot_wf, 
intformle_wf, 
itermConstant_wf, 
itermVar_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_term_value_var_lemma, 
int_formula_prop_wf, 
decidable__lt, 
intformless_wf, 
intformeq_wf, 
int_formula_prop_less_lemma, 
int_formula_prop_eq_lemma, 
subtype_rel_set, 
subtype_rel_list, 
subtype_rel_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
cumulativity, 
hypothesisEquality, 
hypothesis, 
sqequalRule, 
lambdaEquality, 
productEquality, 
intEquality, 
setElimination, 
rename, 
because_Cache, 
natural_numberEquality, 
independent_isectElimination, 
equalityTransitivity, 
equalitySymmetry, 
productElimination, 
dependent_functionElimination, 
unionElimination, 
dependent_pairFormation, 
int_eqEquality, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
independent_pairFormation, 
computeAll, 
lambdaFormation, 
axiomEquality
Latex:
\mforall{}[n:\mBbbN{}].  \mforall{}[T,S:Type].    square-board(n;T)  \msubseteq{}r  square-board(n;S)  supposing  T  \msubseteq{}r  S
Date html generated:
2017_10_01-AM-09_06_29
Last ObjectModification:
2017_07_26-PM-04_46_34
Theory : general
Home
Index