Nuprl Lemma : square-board-subtype

[n:ℕ]. ∀[T,S:Type].  square-board(n;T) ⊆square-board(n;S) supposing T ⊆S


Proof




Definitions occuring in Statement :  square-board: square-board(n;T) nat: uimplies: supposing a subtype_rel: A ⊆B uall: [x:A]. B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a square-board: square-board(n;T) so_lambda: λ2x.t[x] prop: and: P ∧ Q nat: int_seg: {i..j-} guard: {T} ge: i ≥  lelt: i ≤ j < k all: x:A. B[x] decidable: Dec(P) or: P ∨ Q satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False implies:  Q not: ¬A top: Top so_apply: x[s] subtype_rel: A ⊆B
Lemmas referenced :  subtype_rel_sets list_wf equal_wf length_wf all_wf int_seg_wf select_wf int_seg_properties nat_properties decidable__le satisfiable-full-omega-tt intformand_wf intformnot_wf intformle_wf itermConstant_wf itermVar_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_wf decidable__lt intformless_wf intformeq_wf int_formula_prop_less_lemma int_formula_prop_eq_lemma subtype_rel_set subtype_rel_list subtype_rel_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut extract_by_obid sqequalHypSubstitution isectElimination thin cumulativity hypothesisEquality hypothesis sqequalRule lambdaEquality productEquality intEquality setElimination rename because_Cache natural_numberEquality independent_isectElimination equalityTransitivity equalitySymmetry productElimination dependent_functionElimination unionElimination dependent_pairFormation int_eqEquality isect_memberEquality voidElimination voidEquality independent_pairFormation computeAll lambdaFormation axiomEquality

Latex:
\mforall{}[n:\mBbbN{}].  \mforall{}[T,S:Type].    square-board(n;T)  \msubseteq{}r  square-board(n;S)  supposing  T  \msubseteq{}r  S



Date html generated: 2017_10_01-AM-09_06_29
Last ObjectModification: 2017_07_26-PM-04_46_34

Theory : general


Home Index