Nuprl Lemma : testrec1_wf

[A:Type]. ∀[x:ℤ]. ∀[L:A List].  (testrec1(x;L) ∈ ℤ)


Proof




Definitions occuring in Statement :  testrec1: testrec1(x;L) list: List uall: [x:A]. B[x] member: t ∈ T int: universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T all: x:A. B[x] nat: implies:  Q false: False ge: i ≥  uimplies: supposing a not: ¬A satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] and: P ∧ Q prop: or: P ∨ Q testrec1: testrec1(x;L) ifthenelse: if then else fi  btrue: tt cons: [a b] le: A ≤ B less_than': less_than'(a;b) colength: colength(L) nil: [] it: guard: {T} so_lambda: λ2x.t[x] so_apply: x[s] sq_type: SQType(T) less_than: a < b squash: T so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] decidable: Dec(P) subtype_rel: A ⊆B bfalse: ff
Lemmas referenced :  nat_properties full-omega-unsat intformand_wf intformle_wf itermConstant_wf itermVar_wf intformless_wf istype-int int_formula_prop_and_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_less_lemma int_formula_prop_wf ge_wf istype-less_than list-cases null_nil_lemma reduce_tl_nil_lemma product_subtype_list colength-cons-not-zero colength_wf_list istype-void istype-le list_wf subtract-1-ge-0 subtype_base_sq intformeq_wf int_formula_prop_eq_lemma set_subtype_base int_subtype_base spread_cons_lemma decidable__equal_int subtract_wf intformnot_wf itermSubtract_wf itermAdd_wf int_formula_prop_not_lemma int_term_value_subtract_lemma int_term_value_add_lemma decidable__le le_wf null_cons_lemma reduce_tl_cons_lemma istype-nat istype-universe
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt introduction cut thin lambdaFormation_alt extract_by_obid sqequalHypSubstitution isectElimination hypothesisEquality hypothesis setElimination rename sqequalRule intWeakElimination natural_numberEquality independent_isectElimination approximateComputation independent_functionElimination dependent_pairFormation_alt lambdaEquality_alt int_eqEquality dependent_functionElimination Error :memTop,  independent_pairFormation universeIsType voidElimination axiomEquality equalityTransitivity equalitySymmetry functionIsTypeImplies inhabitedIsType unionElimination promote_hyp hypothesis_subsumption productElimination equalityIstype because_Cache dependent_set_memberEquality_alt instantiate applyLambdaEquality imageElimination baseApply closedConclusion baseClosed applyEquality intEquality sqequalBase multiplyEquality isect_memberEquality_alt isectIsTypeImplies universeEquality

Latex:
\mforall{}[A:Type].  \mforall{}[x:\mBbbZ{}].  \mforall{}[L:A  List].    (testrec1(x;L)  \mmember{}  \mBbbZ{})



Date html generated: 2020_05_20-AM-08_20_28
Last ObjectModification: 2020_01_07-PM-04_08_02

Theory : general


Home Index