Nuprl Lemma : free-dml-0-not-1

T:Type. ∀eq:EqDecider(T).  (0 1 ∈ Point(free-DeMorgan-lattice(T;eq))))


Proof




Definitions occuring in Statement :  free-DeMorgan-lattice: free-DeMorgan-lattice(T;eq) lattice-0: 0 lattice-1: 1 lattice-point: Point(l) deq: EqDecider(T) all: x:A. B[x] not: ¬A universe: Type equal: t ∈ T
Definitions unfolded in proof :  all: x:A. B[x] not: ¬A implies:  Q false: False free-DeMorgan-lattice: free-DeMorgan-lattice(T;eq) member: t ∈ T uall: [x:A]. B[x] prop: subtype_rel: A ⊆B bdd-distributive-lattice: BoundedDistributiveLattice so_lambda: λ2x.t[x] and: P ∧ Q so_apply: x[s] uimplies: supposing a
Lemmas referenced :  free-dl-0-not-1 union-deq_wf equal_wf lattice-point_wf free-DeMorgan-lattice_wf subtype_rel_set bounded-lattice-structure_wf lattice-structure_wf lattice-axioms_wf bounded-lattice-structure-subtype bounded-lattice-axioms_wf uall_wf lattice-meet_wf lattice-join_wf lattice-0_wf bdd-distributive-lattice_wf lattice-1_wf deq_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut thin sqequalRule lemma_by_obid sqequalHypSubstitution dependent_functionElimination unionEquality hypothesisEquality isectElimination hypothesis independent_functionElimination voidElimination cumulativity applyEquality instantiate lambdaEquality productEquality universeEquality because_Cache independent_isectElimination setElimination rename

Latex:
\mforall{}T:Type.  \mforall{}eq:EqDecider(T).    (\mneg{}(0  =  1))



Date html generated: 2020_05_20-AM-08_53_52
Last ObjectModification: 2015_12_28-PM-01_57_04

Theory : lattices


Home Index