Nuprl Lemma : free-dl-0-not-1
∀T:Type. ∀eq:EqDecider(T).  (¬(0 = 1 ∈ Point(free-dist-lattice(T; eq))))
Proof
Definitions occuring in Statement : 
free-dist-lattice: free-dist-lattice(T; eq)
, 
lattice-0: 0
, 
lattice-1: 1
, 
lattice-point: Point(l)
, 
deq: EqDecider(T)
, 
all: ∀x:A. B[x]
, 
not: ¬A
, 
universe: Type
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
not: ¬A
, 
implies: P 
⇒ Q
, 
false: False
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
top: Top
, 
squash: ↓T
, 
free-dist-lattice: free-dist-lattice(T; eq)
, 
lattice-1: 1
, 
lattice-0: 0
, 
mk-bounded-distributive-lattice: mk-bounded-distributive-lattice, 
mk-bounded-lattice: mk-bounded-lattice(T;m;j;z;o)
, 
eq_atom: x =a y
, 
ifthenelse: if b then t else f fi 
, 
bfalse: ff
, 
btrue: tt
, 
prop: ℙ
, 
subtype_rel: A ⊆r B
, 
bdd-distributive-lattice: BoundedDistributiveLattice
, 
so_lambda: λ2x.t[x]
, 
and: P ∧ Q
, 
so_apply: x[s]
, 
uimplies: b supposing a
, 
uiff: uiff(P;Q)
Lemmas referenced : 
free-dl-point, 
rec_select_update_lemma, 
equal_wf, 
lattice-point_wf, 
free-dist-lattice_wf, 
subtype_rel_set, 
bounded-lattice-structure_wf, 
lattice-structure_wf, 
lattice-axioms_wf, 
bounded-lattice-structure-subtype, 
bounded-lattice-axioms_wf, 
uall_wf, 
lattice-meet_wf, 
lattice-join_wf, 
lattice-0_wf, 
bdd-distributive-lattice_wf, 
lattice-1_wf, 
deq_wf, 
member-fset-singleton, 
fset_wf, 
deq-fset_wf, 
empty-fset_wf, 
fset-member_wf, 
mem_empty_lemma
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
cut, 
thin, 
sqequalHypSubstitution, 
sqequalRule, 
introduction, 
extract_by_obid, 
isectElimination, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
hypothesis, 
applyEquality, 
lambdaEquality, 
setElimination, 
rename, 
imageMemberEquality, 
hypothesisEquality, 
baseClosed, 
equalityUniverse, 
levelHypothesis, 
because_Cache, 
imageElimination, 
dependent_functionElimination, 
independent_functionElimination, 
cumulativity, 
instantiate, 
productEquality, 
universeEquality, 
independent_isectElimination, 
productElimination, 
equalitySymmetry, 
hyp_replacement, 
applyLambdaEquality
Latex:
\mforall{}T:Type.  \mforall{}eq:EqDecider(T).    (\mneg{}(0  =  1))
Date html generated:
2020_05_20-AM-08_45_05
Last ObjectModification:
2017_07_28-AM-09_14_26
Theory : lattices
Home
Index