Nuprl Lemma : lattice-hom-meet

[l1,l2:BoundedLattice]. ∀[f:Hom(l1;l2)]. ∀[a,b:Point(l1)].  ((f a ∧ b) a ∧ b ∈ Point(l2))


Proof




Definitions occuring in Statement :  bounded-lattice-hom: Hom(l1;l2) bdd-lattice: BoundedLattice lattice-meet: a ∧ b lattice-point: Point(l) uall: [x:A]. B[x] apply: a equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T bounded-lattice-hom: Hom(l1;l2) lattice-hom: Hom(l1;l2) and: P ∧ Q subtype_rel: A ⊆B bdd-lattice: BoundedLattice so_lambda: λ2x.t[x] prop: so_apply: x[s] uimplies: supposing a true: True squash: T guard: {T} iff: ⇐⇒ Q rev_implies:  Q implies:  Q
Lemmas referenced :  lattice-point_wf subtype_rel_set bounded-lattice-structure_wf lattice-structure_wf lattice-axioms_wf bounded-lattice-structure-subtype bounded-lattice-axioms_wf bounded-lattice-hom_wf bdd-lattice_wf lattice-meet_wf equal_wf squash_wf true_wf iff_weakening_equal
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalHypSubstitution setElimination thin rename productElimination hypothesis extract_by_obid isectElimination hypothesisEquality applyEquality sqequalRule instantiate lambdaEquality productEquality cumulativity independent_isectElimination isect_memberEquality axiomEquality because_Cache functionExtensionality natural_numberEquality imageElimination equalityTransitivity equalitySymmetry universeEquality imageMemberEquality baseClosed independent_functionElimination

Latex:
\mforall{}[l1,l2:BoundedLattice].  \mforall{}[f:Hom(l1;l2)].  \mforall{}[a,b:Point(l1)].    ((f  a  \mwedge{}  b)  =  f  a  \mwedge{}  f  b)



Date html generated: 2020_05_20-AM-08_44_36
Last ObjectModification: 2017_07_28-AM-09_14_12

Theory : lattices


Home Index