Nuprl Lemma : lattice-meet-eq-1

[l:BoundedLattice]. ∀[x,y:Point(l)].  uiff(x ∧ 1 ∈ Point(l);(x 1 ∈ Point(l)) ∧ (y 1 ∈ Point(l)))


Proof




Definitions occuring in Statement :  bdd-lattice: BoundedLattice lattice-1: 1 lattice-meet: a ∧ b lattice-point: Point(l) uiff: uiff(P;Q) uall: [x:A]. B[x] and: P ∧ Q equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uiff: uiff(P;Q) and: P ∧ Q uimplies: supposing a prop: subtype_rel: A ⊆B bdd-lattice: BoundedLattice so_lambda: λ2x.t[x] so_apply: x[s] squash: T true: True guard: {T} iff: ⇐⇒ Q rev_implies:  Q implies:  Q
Lemmas referenced :  equal_wf lattice-point_wf subtype_rel_set bounded-lattice-structure_wf lattice-structure_wf lattice-axioms_wf bounded-lattice-structure-subtype bounded-lattice-axioms_wf lattice-meet_wf lattice-1_wf squash_wf true_wf iff_weakening_equal lattice-meet-idempotent bdd-lattice-subtype-lattice bdd-lattice_wf lattice-join_wf lattice_properties lattice-1-join
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut independent_pairFormation hypothesis sqequalRule sqequalHypSubstitution productElimination thin independent_pairEquality axiomEquality extract_by_obid isectElimination hypothesisEquality applyEquality instantiate lambdaEquality productEquality cumulativity independent_isectElimination because_Cache setElimination rename imageElimination equalityTransitivity equalitySymmetry universeEquality natural_numberEquality imageMemberEquality baseClosed independent_functionElimination isect_memberEquality applyLambdaEquality hyp_replacement

Latex:
\mforall{}[l:BoundedLattice].  \mforall{}[x,y:Point(l)].    uiff(x  \mwedge{}  y  =  1;(x  =  1)  \mwedge{}  (y  =  1))



Date html generated: 2020_05_20-AM-08_26_12
Last ObjectModification: 2017_07_28-AM-09_13_10

Theory : lattices


Home Index