Nuprl Lemma : find_property
∀[T:Type]
∀P:T ⟶ 𝔹. ∀as:T List. ∀d:T. (((first a ∈ as s.t. P[a] else d) ∈ as) ∨ ((first a ∈ as s.t. P[a] else d) = d ∈ T))
Proof
Definitions occuring in Statement :
find: (first x ∈ as s.t. P[x] else d)
,
l_member: (x ∈ l)
,
list: T List
,
bool: 𝔹
,
uall: ∀[x:A]. B[x]
,
so_apply: x[s]
,
all: ∀x:A. B[x]
,
or: P ∨ Q
,
function: x:A ⟶ B[x]
,
universe: Type
,
equal: s = t ∈ T
Definitions unfolded in proof :
member: t ∈ T
,
so_apply: x[s]
,
all: ∀x:A. B[x]
,
so_lambda: so_lambda(x,y,z.t[x; y; z])
,
top: Top
,
so_apply: x[s1;s2;s3]
,
uall: ∀[x:A]. B[x]
,
find: (first x ∈ as s.t. P[x] else d)
,
so_lambda: λ2x.t[x]
,
implies: P
⇒ Q
,
true: True
,
guard: {T}
,
or: P ∨ Q
,
prop: ℙ
,
bool: 𝔹
,
unit: Unit
,
it: ⋅
,
btrue: tt
,
uiff: uiff(P;Q)
,
and: P ∧ Q
,
uimplies: b supposing a
,
ifthenelse: if b then t else f fi
,
bfalse: ff
,
iff: P
⇐⇒ Q
,
rev_implies: P
⇐ Q
,
subtype_rel: A ⊆r B
Lemmas referenced :
bool_wf,
list_ind_cons_lemma,
equal_wf,
assert_wf,
bnot_wf,
not_wf,
list_induction,
all_wf,
or_wf,
l_member_wf,
find_wf,
list_wf,
filter_nil_lemma,
list_ind_nil_lemma,
nil_wf,
filter_cons_lemma,
eqtt_to_assert,
uiff_transitivity,
eqff_to_assert,
assert_of_bnot,
cons_member,
l_member_subtype,
cons_wf
Rules used in proof :
sqequalSubstitution,
sqequalTransitivity,
computationStep,
sqequalReflexivity,
applyEquality,
hypothesisEquality,
cut,
introduction,
extract_by_obid,
hypothesis,
equalityTransitivity,
equalitySymmetry,
sqequalRule,
sqequalHypSubstitution,
dependent_functionElimination,
thin,
isect_memberEquality,
voidElimination,
voidEquality,
isectElimination,
because_Cache,
isect_memberFormation,
lambdaFormation,
lambdaEquality,
cumulativity,
functionExtensionality,
independent_functionElimination,
natural_numberEquality,
inrFormation,
rename,
unionElimination,
equalityElimination,
productElimination,
independent_isectElimination,
functionEquality,
universeEquality,
inlFormation
Latex:
\mforall{}[T:Type]
\mforall{}P:T {}\mrightarrow{} \mBbbB{}. \mforall{}as:T List. \mforall{}d:T.
(((first a \mmember{} as s.t. P[a] else d) \mmember{} as) \mvee{} ((first a \mmember{} as s.t. P[a] else d) = d))
Date html generated:
2017_10_01-AM-08_34_16
Last ObjectModification:
2017_07_26-PM-04_25_25
Theory : list!
Home
Index