Nuprl Lemma : matrix-times-0-right
∀[k,m,n:ℕ]. ∀[r:Rng]. ∀[N:Matrix(k;m;r)].  ((N*0) = 0 ∈ Matrix(k;n;r))
Proof
Definitions occuring in Statement : 
zero-matrix: 0
, 
matrix-times: (M*N)
, 
matrix: Matrix(n;m;r)
, 
nat: ℕ
, 
uall: ∀[x:A]. B[x]
, 
equal: s = t ∈ T
, 
rng: Rng
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
matrix: Matrix(n;m;r)
, 
zero-matrix: 0
, 
matrix-times: (M*N)
, 
all: ∀x:A. B[x]
, 
top: Top
, 
so_lambda: λ2x y.t[x; y]
, 
so_apply: x[s1;s2]
, 
mx: matrix(M[x; y])
, 
matrix-ap: M[i,j]
, 
nat: ℕ
, 
rng: Rng
, 
true: True
, 
guard: {T}
, 
int_seg: {i..j-}
, 
lelt: i ≤ j < k
, 
and: P ∧ Q
, 
ge: i ≥ j 
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
uimplies: b supposing a
, 
not: ¬A
, 
implies: P 
⇒ Q
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
, 
false: False
, 
prop: ℙ
, 
squash: ↓T
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
subtype_rel: A ⊆r B
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
Lemmas referenced : 
matrix_ap_mx_lemma, 
int_seg_wf, 
matrix_wf, 
rng_wf, 
nat_wf, 
rng_car_wf, 
matrix-ap_wf, 
rng_zero_wf, 
int_seg_properties, 
nat_properties, 
decidable__le, 
full-omega-unsat, 
intformand_wf, 
intformnot_wf, 
intformle_wf, 
itermConstant_wf, 
itermVar_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_term_value_var_lemma, 
int_formula_prop_wf, 
equal_wf, 
squash_wf, 
true_wf, 
rng_sum_wf, 
rng_times_zero, 
subtype_rel_self, 
iff_weakening_equal, 
rng_sum_0
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
functionExtensionality, 
rename, 
sqequalRule, 
extract_by_obid, 
sqequalHypSubstitution, 
dependent_functionElimination, 
thin, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
hypothesis, 
isectElimination, 
natural_numberEquality, 
setElimination, 
hypothesisEquality, 
because_Cache, 
axiomEquality, 
productElimination, 
unionElimination, 
independent_isectElimination, 
approximateComputation, 
independent_functionElimination, 
dependent_pairFormation, 
lambdaEquality, 
int_eqEquality, 
intEquality, 
independent_pairFormation, 
applyEquality, 
imageElimination, 
equalityTransitivity, 
equalitySymmetry, 
universeEquality, 
functionEquality, 
imageMemberEquality, 
baseClosed, 
instantiate
Latex:
\mforall{}[k,m,n:\mBbbN{}].  \mforall{}[r:Rng].  \mforall{}[N:Matrix(k;m;r)].    ((N*0)  =  0)
Date html generated:
2018_05_21-PM-09_35_06
Last ObjectModification:
2018_05_19-PM-04_23_58
Theory : matrices
Home
Index