Nuprl Lemma : FOQuantifier_wf
∀[vs:ℤ List]. ∀[isall:𝔹].
  (FOQuantifier(isall) ∈ z:ℤ ⟶ AbstractFOFormula(vs) ⟶ AbstractFOFormula(filter(λx.(¬b(x =z z));vs)))
Proof
Definitions occuring in Statement : 
FOQuantifier: FOQuantifier(isall), 
AbstractFOFormula: AbstractFOFormula(vs), 
filter: filter(P;l), 
list: T List, 
bnot: ¬bb, 
eq_int: (i =z j), 
bool: 𝔹, 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
lambda: λx.A[x], 
function: x:A ⟶ B[x], 
int: ℤ
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
AbstractFOFormula: AbstractFOFormula(vs), 
FOQuantifier: FOQuantifier(isall), 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
bool: 𝔹, 
unit: Unit, 
it: ⋅, 
btrue: tt, 
uiff: uiff(P;Q), 
and: P ∧ Q, 
uimplies: b supposing a, 
ifthenelse: if b then t else f fi , 
so_lambda: λ2x.t[x], 
so_apply: x[s], 
prop: ℙ, 
subtype_rel: A ⊆r B, 
bfalse: ff
Lemmas referenced : 
eqtt_to_assert, 
all_wf, 
FOSatWith_wf, 
update-assignment_wf, 
FOAssignment_wf, 
filter_wf5, 
l_member_wf, 
bnot_wf, 
eq_int_wf, 
FOStruct_wf, 
uiff_transitivity, 
equal-wf-T-base, 
bool_wf, 
assert_wf, 
not_wf, 
eqff_to_assert, 
assert_of_bnot, 
exists_wf, 
equal_wf, 
list_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalRule, 
hypothesisEquality, 
thin, 
because_Cache, 
lambdaFormation, 
sqequalHypSubstitution, 
unionElimination, 
equalityElimination, 
extract_by_obid, 
isectElimination, 
hypothesis, 
productElimination, 
independent_isectElimination, 
lambdaEquality, 
cumulativity, 
intEquality, 
setElimination, 
rename, 
setEquality, 
universeEquality, 
functionEquality, 
applyEquality, 
baseClosed, 
independent_functionElimination, 
equalityTransitivity, 
equalitySymmetry, 
dependent_functionElimination, 
axiomEquality, 
isect_memberEquality
Latex:
\mforall{}[vs:\mBbbZ{}  List].  \mforall{}[isall:\mBbbB{}].
    (FOQuantifier(isall)  \mmember{}  z:\mBbbZ{}
      {}\mrightarrow{}  AbstractFOFormula(vs)
      {}\mrightarrow{}  AbstractFOFormula(filter(\mlambda{}x.(\mneg{}\msubb{}(x  =\msubz{}  z));vs)))
Date html generated:
2018_05_21-PM-10_20_39
Last ObjectModification:
2017_07_26-PM-06_37_33
Theory : minimal-first-order-logic
Home
Index