Nuprl Lemma : not-member-mFOL-sequent-freevars
∀s:mFOL-sequent(). ∀v:ℤ.
  (¬(v ∈ mFOL-sequent-freevars(s)) ⇐⇒ (¬(v ∈ mFOL-freevars(snd(s)))) ∧ (∀h∈fst(s).¬(v ∈ mFOL-freevars(h))))
Proof
Definitions occuring in Statement : 
mFOL-sequent-freevars: mFOL-sequent-freevars(s), 
mFOL-sequent: mFOL-sequent(), 
mFOL-freevars: mFOL-freevars(fmla), 
l_all: (∀x∈L.P[x]), 
l_member: (x ∈ l), 
pi1: fst(t), 
pi2: snd(t), 
all: ∀x:A. B[x], 
iff: P ⇐⇒ Q, 
not: ¬A, 
and: P ∧ Q, 
int: ℤ
Definitions unfolded in proof : 
all: ∀x:A. B[x], 
mFOL-sequent: mFOL-sequent(), 
mFOL-sequent-freevars: mFOL-sequent-freevars(s), 
pi2: snd(t), 
pi1: fst(t), 
member: t ∈ T, 
uall: ∀[x:A]. B[x], 
implies: P ⇒ Q, 
so_lambda: λ2x.t[x], 
prop: ℙ, 
and: P ∧ Q, 
so_apply: x[s], 
top: Top, 
iff: P ⇐⇒ Q, 
uiff: uiff(P;Q), 
uimplies: b supposing a, 
rev_implies: P ⇐ Q, 
subtype_rel: A ⊆r B, 
not: ¬A, 
or: P ∨ Q, 
true: True, 
false: False, 
l_all: (∀x∈L.P[x]), 
guard: {T}, 
cand: A c∧ B
Lemmas referenced : 
mFOL-freevars_wf, 
list_wf, 
list_induction, 
mFOL_wf, 
all_wf, 
iff_wf, 
not_wf, 
l_member_wf, 
reduce_wf, 
l-union_wf, 
int-deq_wf, 
l_all_wf2, 
reduce_nil_lemma, 
l_all_nil_iff, 
nil_wf, 
subtype_rel_set, 
true_wf, 
reduce_cons_lemma, 
member-union, 
or_wf, 
l_all_cons, 
cons_wf, 
equal_wf, 
mFOL-sequent_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
sqequalHypSubstitution, 
productElimination, 
thin, 
sqequalRule, 
cut, 
introduction, 
extract_by_obid, 
isectElimination, 
hypothesisEquality, 
hypothesis, 
intEquality, 
lambdaEquality, 
because_Cache, 
productEquality, 
setElimination, 
rename, 
setEquality, 
independent_functionElimination, 
dependent_functionElimination, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
addLevel, 
allFunctionality, 
independent_pairFormation, 
impliesFunctionality, 
independent_isectElimination, 
andLevelFunctionality, 
applyEquality, 
functionExtensionality, 
impliesLevelFunctionality, 
equalityTransitivity, 
equalitySymmetry, 
natural_numberEquality, 
inrFormation, 
inlFormation, 
unionElimination
Latex:
\mforall{}s:mFOL-sequent().  \mforall{}v:\mBbbZ{}.
    (\mneg{}(v  \mmember{}  mFOL-sequent-freevars(s))
    \mLeftarrow{}{}\mRightarrow{}  (\mneg{}(v  \mmember{}  mFOL-freevars(snd(s))))  \mwedge{}  (\mforall{}h\mmember{}fst(s).\mneg{}(v  \mmember{}  mFOL-freevars(h))))
 Date html generated: 
2018_05_21-PM-10_29_30
 Last ObjectModification: 
2017_07_26-PM-06_41_38
Theory : minimal-first-order-logic
Home
Index