Nuprl Lemma : qdiv_functionality_wrt_qle

[a,b,c,d:ℚ].  ((a/c) ≤ (b/d)) supposing ((c ≥ d) and (a ≤ b) and 0 < and (0 ≤ a))


Proof




Definitions occuring in Statement :  qge: a ≥ b qle: r ≤ s qless: r < s qdiv: (r/s) rationals: uimplies: supposing a uall: [x:A]. B[x] natural_number: $n
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a not: ¬A implies:  Q qge: a ≥ b guard: {T} subtype_rel: A ⊆B false: False prop: uiff: uiff(P;Q) and: P ∧ Q rev_uimplies: rev_uimplies(P;Q) squash: T true: True iff: ⇐⇒ Q rev_implies:  Q
Lemmas referenced :  qle_weakening_lt_qorder qmul_functionality_wrt_qle qmul_ac_1_qrng qmul_comm_qrng iff_weakening_equal qmul_wf qmul-qdiv-cancel true_wf squash_wf qmul_preserves_qle qless_wf qle_wf qge_wf rationals_wf equal_wf qless_irreflexivity qle_weakening_eq_qorder int-subtype-rationals qless_transitivity_2_qorder qdiv_wf qle_witness
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut lemma_by_obid sqequalHypSubstitution isectElimination thin because_Cache independent_isectElimination lambdaFormation hypothesis natural_numberEquality applyEquality sqequalRule hypothesisEquality voidElimination independent_functionElimination isect_memberEquality equalityTransitivity equalitySymmetry productElimination lambdaEquality imageElimination imageMemberEquality baseClosed universeEquality

Latex:
\mforall{}[a,b,c,d:\mBbbQ{}].    ((a/c)  \mleq{}  (b/d))  supposing  ((c  \mgeq{}  d)  and  (a  \mleq{}  b)  and  0  <  d  and  (0  \mleq{}  a))



Date html generated: 2016_05_15-PM-11_04_29
Last ObjectModification: 2016_01_16-PM-09_28_33

Theory : rationals


Home Index