Nuprl Lemma : qmin-eq-iff-1
∀[q,r:ℚ].  uiff(qmin(q;r) = q ∈ ℚ;q ≤ r)
Proof
Definitions occuring in Statement : 
qmin: qmin(x;y)
, 
qle: r ≤ s
, 
rationals: ℚ
, 
uiff: uiff(P;Q)
, 
uall: ∀[x:A]. B[x]
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
or: P ∨ Q
, 
decidable: Dec(P)
, 
all: ∀x:A. B[x]
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
guard: {T}
, 
prop: ℙ
, 
implies: P 
⇒ Q
, 
uimplies: b supposing a
, 
and: P ∧ Q
, 
uiff: uiff(P;Q)
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
Lemmas referenced : 
qle_weakening_eq_qorder, 
qle_weakening_lt_qorder, 
not-qle, 
decidable__qle, 
qmin-eq-iff, 
iff_weakening_uiff, 
rev_implies_wf, 
member_wf, 
qmin_wf, 
equal_wf, 
qle_antisymmetry, 
qle_wf, 
rationals_wf, 
qle_witness
Rules used in proof : 
unionElimination, 
promote_hyp, 
functionEquality, 
productEquality, 
functionIsTypeImplies, 
dependent_functionElimination, 
lambdaEquality_alt, 
independent_isectElimination, 
lambdaFormation_alt, 
equalityIstype, 
functionIsType, 
productIsType, 
independent_pairFormation, 
universeIsType, 
because_Cache, 
axiomEquality, 
inhabitedIsType, 
isectIsTypeImplies, 
hypothesis, 
independent_functionElimination, 
extract_by_obid, 
hypothesisEquality, 
isectElimination, 
isect_memberEquality_alt, 
independent_pairEquality, 
thin, 
productElimination, 
sqequalHypSubstitution, 
sqequalRule, 
cut, 
introduction, 
isect_memberFormation_alt, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution
Latex:
\mforall{}[q,r:\mBbbQ{}].    uiff(qmin(q;r)  =  q;q  \mleq{}  r)
Date html generated:
2019_10_29-AM-07_44_13
Last ObjectModification:
2019_10_21-PM-06_23_33
Theory : rationals
Home
Index