Nuprl Lemma : qmin-eq-iff-1

[q,r:ℚ].  uiff(qmin(q;r) q ∈ ℚ;q ≤ r)


Proof




Definitions occuring in Statement :  qmin: qmin(x;y) qle: r ≤ s rationals: uiff: uiff(P;Q) uall: [x:A]. B[x] equal: t ∈ T
Definitions unfolded in proof :  or: P ∨ Q decidable: Dec(P) all: x:A. B[x] iff: ⇐⇒ Q rev_implies:  Q guard: {T} prop: implies:  Q uimplies: supposing a and: P ∧ Q uiff: uiff(P;Q) member: t ∈ T uall: [x:A]. B[x]
Lemmas referenced :  qle_weakening_eq_qorder qle_weakening_lt_qorder not-qle decidable__qle qmin-eq-iff iff_weakening_uiff rev_implies_wf member_wf qmin_wf equal_wf qle_antisymmetry qle_wf rationals_wf qle_witness
Rules used in proof :  unionElimination promote_hyp functionEquality productEquality functionIsTypeImplies dependent_functionElimination lambdaEquality_alt independent_isectElimination lambdaFormation_alt equalityIstype functionIsType productIsType independent_pairFormation universeIsType because_Cache axiomEquality inhabitedIsType isectIsTypeImplies hypothesis independent_functionElimination extract_by_obid hypothesisEquality isectElimination isect_memberEquality_alt independent_pairEquality thin productElimination sqequalHypSubstitution sqequalRule cut introduction isect_memberFormation_alt sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution

Latex:
\mforall{}[q,r:\mBbbQ{}].    uiff(qmin(q;r)  =  q;q  \mleq{}  r)



Date html generated: 2019_10_29-AM-07_44_13
Last ObjectModification: 2019_10_21-PM-06_23_33

Theory : rationals


Home Index