Nuprl Lemma : qmin-eq-iff
∀[q,r,s:ℚ].  uiff(qmin(q;r) = s ∈ ℚ;((r ≤ q) 
⇒ (s = r ∈ ℚ)) ∧ ((q ≤ r) 
⇒ (s = q ∈ ℚ)))
Proof
Definitions occuring in Statement : 
qmin: qmin(x;y)
, 
qle: r ≤ s
, 
rationals: ℚ
, 
uiff: uiff(P;Q)
, 
uall: ∀[x:A]. B[x]
, 
implies: P 
⇒ Q
, 
and: P ∧ Q
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
subtype_rel: A ⊆r B
, 
true: True
, 
squash: ↓T
, 
rev_implies: P 
⇐ Q
, 
not: ¬A
, 
false: False
, 
assert: ↑b
, 
bnot: ¬bb
, 
sq_type: SQType(T)
, 
or: P ∨ Q
, 
exists: ∃x:A. B[x]
, 
bfalse: ff
, 
ifthenelse: if b then t else f fi 
, 
iff: P 
⇐⇒ Q
, 
guard: {T}
, 
prop: ℙ
, 
uimplies: b supposing a
, 
and: P ∧ Q
, 
uiff: uiff(P;Q)
, 
btrue: tt
, 
it: ⋅
, 
unit: Unit
, 
bool: 𝔹
, 
implies: P 
⇒ Q
, 
all: ∀x:A. B[x]
, 
qmin: qmin(x;y)
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
Lemmas referenced : 
trivial-equal, 
qle_weakening_lt_qorder, 
rationals_wf, 
equal_wf, 
qless_trichot_qorder, 
assert-bnot, 
bool_subtype_base, 
bool_wf, 
subtype_base_sq, 
bool_cases_sqequal, 
eqff_to_assert, 
qle_wf, 
qle_weakening_eq_qorder, 
qle_transitivity_qorder, 
qle_antisymmetry, 
iff_weakening_equal, 
assert-q_le-eq, 
eqtt_to_assert, 
q_le_wf
Rules used in proof : 
isectIsTypeImplies, 
isect_memberEquality_alt, 
baseClosed, 
imageMemberEquality, 
natural_numberEquality, 
imageElimination, 
applyEquality, 
voidElimination, 
cumulativity, 
instantiate, 
promote_hyp, 
dependent_pairFormation_alt, 
functionIsType, 
productIsType, 
equalityIstype, 
functionIsTypeImplies, 
axiomEquality, 
dependent_functionElimination, 
lambdaEquality_alt, 
independent_pairEquality, 
universeIsType, 
because_Cache, 
independent_pairFormation, 
sqequalRule, 
independent_functionElimination, 
independent_isectElimination, 
productElimination, 
equalitySymmetry, 
equalityTransitivity, 
equalityElimination, 
unionElimination, 
lambdaFormation_alt, 
inhabitedIsType, 
hypothesis, 
hypothesisEquality, 
thin, 
isectElimination, 
sqequalHypSubstitution, 
extract_by_obid, 
cut, 
introduction, 
isect_memberFormation_alt, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution
Latex:
\mforall{}[q,r,s:\mBbbQ{}].    uiff(qmin(q;r)  =  s;((r  \mleq{}  q)  {}\mRightarrow{}  (s  =  r))  \mwedge{}  ((q  \mleq{}  r)  {}\mRightarrow{}  (s  =  q)))
Date html generated:
2019_10_29-AM-07_44_08
Last ObjectModification:
2019_10_21-PM-06_18_57
Theory : rationals
Home
Index