Nuprl Lemma : qmin-eq-iff

[q,r,s:ℚ].  uiff(qmin(q;r) s ∈ ℚ;((r ≤ q)  (s r ∈ ℚ)) ∧ ((q ≤ r)  (s q ∈ ℚ)))


Proof




Definitions occuring in Statement :  qmin: qmin(x;y) qle: r ≤ s rationals: uiff: uiff(P;Q) uall: [x:A]. B[x] implies:  Q and: P ∧ Q equal: t ∈ T
Definitions unfolded in proof :  subtype_rel: A ⊆B true: True squash: T rev_implies:  Q not: ¬A false: False assert: b bnot: ¬bb sq_type: SQType(T) or: P ∨ Q exists: x:A. B[x] bfalse: ff ifthenelse: if then else fi  iff: ⇐⇒ Q guard: {T} prop: uimplies: supposing a and: P ∧ Q uiff: uiff(P;Q) btrue: tt it: unit: Unit bool: 𝔹 implies:  Q all: x:A. B[x] qmin: qmin(x;y) member: t ∈ T uall: [x:A]. B[x]
Lemmas referenced :  trivial-equal qle_weakening_lt_qorder rationals_wf equal_wf qless_trichot_qorder assert-bnot bool_subtype_base bool_wf subtype_base_sq bool_cases_sqequal eqff_to_assert qle_wf qle_weakening_eq_qorder qle_transitivity_qorder qle_antisymmetry iff_weakening_equal assert-q_le-eq eqtt_to_assert q_le_wf
Rules used in proof :  isectIsTypeImplies isect_memberEquality_alt baseClosed imageMemberEquality natural_numberEquality imageElimination applyEquality voidElimination cumulativity instantiate promote_hyp dependent_pairFormation_alt functionIsType productIsType equalityIstype functionIsTypeImplies axiomEquality dependent_functionElimination lambdaEquality_alt independent_pairEquality universeIsType because_Cache independent_pairFormation sqequalRule independent_functionElimination independent_isectElimination productElimination equalitySymmetry equalityTransitivity equalityElimination unionElimination lambdaFormation_alt inhabitedIsType hypothesis hypothesisEquality thin isectElimination sqequalHypSubstitution extract_by_obid cut introduction isect_memberFormation_alt sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution

Latex:
\mforall{}[q,r,s:\mBbbQ{}].    uiff(qmin(q;r)  =  s;((r  \mleq{}  q)  {}\mRightarrow{}  (s  =  r))  \mwedge{}  ((q  \mleq{}  r)  {}\mRightarrow{}  (s  =  q)))



Date html generated: 2019_10_29-AM-07_44_08
Last ObjectModification: 2019_10_21-PM-06_18_57

Theory : rationals


Home Index