Nuprl Lemma : qmul-qdiv-cancel6

[a,b,c:ℚ].  (((b/c a) a) (b/c) ∈ ℚsupposing ((¬(c 0 ∈ ℚ)) and (a 0 ∈ ℚ)))


Proof




Definitions occuring in Statement :  qdiv: (r/s) qmul: s rationals: uimplies: supposing a uall: [x:A]. B[x] not: ¬A natural_number: $n equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a prop: uiff: uiff(P;Q) and: P ∧ Q rev_uimplies: rev_uimplies(P;Q) true: True squash: T subtype_rel: A ⊆B guard: {T} iff: ⇐⇒ Q rev_implies:  Q implies:  Q not: ¬A false: False
Lemmas referenced :  not_wf equal-wf-T-base rationals_wf qmul-preserves-eq qmul_wf qdiv_wf equal_wf squash_wf true_wf qmul_ac_1_qrng qmul_comm_qrng qmul-qdiv-cancel2 qmul-qdiv-cancel iff_weakening_equal int-subtype-rationals qmul_zero_qrng qmul_one_qrng
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut hypothesis extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality baseClosed sqequalRule isect_memberEquality axiomEquality because_Cache equalityTransitivity equalitySymmetry independent_isectElimination productElimination natural_numberEquality applyEquality lambdaEquality imageElimination universeEquality imageMemberEquality independent_functionElimination lambdaFormation applyLambdaEquality voidElimination

Latex:
\mforall{}[a,b,c:\mBbbQ{}].    (((b/c  *  a)  *  a)  =  (b/c))  supposing  ((\mneg{}(c  =  0))  and  (\mneg{}(a  =  0)))



Date html generated: 2018_05_21-PM-11_51_13
Last ObjectModification: 2017_07_26-PM-06_44_23

Theory : rationals


Home Index