Nuprl Lemma : qround-eq

[r:ℚ]. ∀[k:ℕ+].  (qround(r;k) (rounded-numerator(r;2 k)/2 k) ∈ ℚ)


Proof




Definitions occuring in Statement :  qdiv: (r/s) qround: qround(r;k) rounded-numerator: rounded-numerator(r;k) rationals: nat_plus: + uall: [x:A]. B[x] multiply: m natural_number: $n equal: t ∈ T
Definitions unfolded in proof :  qround: qround(r;k) uall: [x:A]. B[x] member: t ∈ T nat_plus: + less_than: a < b squash: T less_than': less_than'(a;b) true: True and: P ∧ Q prop: subtype_rel: A ⊆B uimplies: supposing a not: ¬A implies:  Q satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False all: x:A. B[x] top: Top uiff: uiff(P;Q)
Lemmas referenced :  mk-rational-qdiv rounded-numerator_wf mul_nat_plus less_than_wf qdiv_wf int-subtype-rationals nat_plus_properties satisfiable-full-omega-tt intformand_wf intformeq_wf itermMultiply_wf itermConstant_wf itermVar_wf intformless_wf int_formula_prop_and_lemma int_formula_prop_eq_lemma int_term_value_mul_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_less_lemma int_formula_prop_wf equal-wf-T-base int-equal-in-rationals rationals_wf not_wf nat_plus_wf
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep isect_memberFormation introduction cut extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality dependent_set_memberEquality natural_numberEquality independent_pairFormation imageMemberEquality baseClosed hypothesis multiplyEquality setElimination rename because_Cache applyEquality independent_isectElimination intEquality lambdaFormation dependent_pairFormation lambdaEquality int_eqEquality dependent_functionElimination isect_memberEquality voidElimination voidEquality computeAll equalityTransitivity equalitySymmetry addLevel impliesFunctionality productElimination axiomEquality

Latex:
\mforall{}[r:\mBbbQ{}].  \mforall{}[k:\mBbbN{}\msupplus{}].    (qround(r;k)  =  (rounded-numerator(r;2  *  k)/2  *  k))



Date html generated: 2018_05_21-PM-11_47_29
Last ObjectModification: 2017_07_26-PM-06_43_09

Theory : rationals


Home Index