Nuprl Lemma : qround-eq
∀[r:ℚ]. ∀[k:ℕ+].  (qround(r;k) = (rounded-numerator(r;2 * k)/2 * k) ∈ ℚ)
Proof
Definitions occuring in Statement : 
qdiv: (r/s)
, 
qround: qround(r;k)
, 
rounded-numerator: rounded-numerator(r;k)
, 
rationals: ℚ
, 
nat_plus: ℕ+
, 
uall: ∀[x:A]. B[x]
, 
multiply: n * m
, 
natural_number: $n
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
qround: qround(r;k)
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
nat_plus: ℕ+
, 
less_than: a < b
, 
squash: ↓T
, 
less_than': less_than'(a;b)
, 
true: True
, 
and: P ∧ Q
, 
prop: ℙ
, 
subtype_rel: A ⊆r B
, 
uimplies: b supposing a
, 
not: ¬A
, 
implies: P 
⇒ Q
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
, 
false: False
, 
all: ∀x:A. B[x]
, 
top: Top
, 
uiff: uiff(P;Q)
Lemmas referenced : 
mk-rational-qdiv, 
rounded-numerator_wf, 
mul_nat_plus, 
less_than_wf, 
qdiv_wf, 
int-subtype-rationals, 
nat_plus_properties, 
satisfiable-full-omega-tt, 
intformand_wf, 
intformeq_wf, 
itermMultiply_wf, 
itermConstant_wf, 
itermVar_wf, 
intformless_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_eq_lemma, 
int_term_value_mul_lemma, 
int_term_value_constant_lemma, 
int_term_value_var_lemma, 
int_formula_prop_less_lemma, 
int_formula_prop_wf, 
equal-wf-T-base, 
int-equal-in-rationals, 
rationals_wf, 
not_wf, 
nat_plus_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalRule, 
sqequalReflexivity, 
sqequalTransitivity, 
computationStep, 
isect_memberFormation, 
introduction, 
cut, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
dependent_set_memberEquality, 
natural_numberEquality, 
independent_pairFormation, 
imageMemberEquality, 
baseClosed, 
hypothesis, 
multiplyEquality, 
setElimination, 
rename, 
because_Cache, 
applyEquality, 
independent_isectElimination, 
intEquality, 
lambdaFormation, 
dependent_pairFormation, 
lambdaEquality, 
int_eqEquality, 
dependent_functionElimination, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
computeAll, 
equalityTransitivity, 
equalitySymmetry, 
addLevel, 
impliesFunctionality, 
productElimination, 
axiomEquality
Latex:
\mforall{}[r:\mBbbQ{}].  \mforall{}[k:\mBbbN{}\msupplus{}].    (qround(r;k)  =  (rounded-numerator(r;2  *  k)/2  *  k))
Date html generated:
2018_05_21-PM-11_47_29
Last ObjectModification:
2017_07_26-PM-06_43_09
Theory : rationals
Home
Index