Nuprl Lemma : qsum-non-neg2

[i,j:ℤ]. ∀[f:{i..j-} ⟶ ℚ].  0 ≤ Σi ≤ n < j. f[n] supposing ∀n:{i..j-}. (0 ≤ f[n])


Proof




Definitions occuring in Statement :  qsum: Σa ≤ j < b. E[j] qle: r ≤ s rationals: int_seg: {i..j-} uimplies: supposing a uall: [x:A]. B[x] so_apply: x[s] all: x:A. B[x] function: x:A ⟶ B[x] natural_number: $n int:
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a so_lambda: λ2x.t[x] subtype_rel: A ⊆B so_apply: x[s] all: x:A. B[x] implies:  Q prop: squash: T true: True guard: {T} iff: ⇐⇒ Q and: P ∧ Q int_seg: {i..j-} lelt: i ≤ j < k
Lemmas referenced :  lelt_wf all_wf qle_witness int-subtype-rationals subtract_wf rationals_wf le_int_wf ifthenelse_wf qmul_zero_qrng iff_weakening_equal qsum_wf qsum-const2 qle_wf le_wf less_than_wf int_seg_wf qsum-qle
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality sqequalRule lambdaEquality natural_numberEquality hypothesis applyEquality because_Cache independent_isectElimination lambdaFormation imageElimination imageMemberEquality baseClosed equalityTransitivity equalitySymmetry productElimination independent_functionElimination isect_memberEquality functionEquality intEquality dependent_set_memberEquality independent_pairFormation dependent_functionElimination

Latex:
\mforall{}[i,j:\mBbbZ{}].  \mforall{}[f:\{i..j\msupminus{}\}  {}\mrightarrow{}  \mBbbQ{}].    0  \mleq{}  \mSigma{}i  \mleq{}  n  <  j.  f[n]  supposing  \mforall{}n:\{i..j\msupminus{}\}.  (0  \mleq{}  f[n])



Date html generated: 2016_05_15-PM-11_15_48
Last ObjectModification: 2016_01_16-PM-09_18_49

Theory : rationals


Home Index