Nuprl Lemma : qsum-non-neg2
∀[i,j:ℤ]. ∀[f:{i..j-} ⟶ ℚ].  0 ≤ Σi ≤ n < j. f[n] supposing ∀n:{i..j-}. (0 ≤ f[n])
Proof
Definitions occuring in Statement : 
qsum: Σa ≤ j < b. E[j]
, 
qle: r ≤ s
, 
rationals: ℚ
, 
int_seg: {i..j-}
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
so_apply: x[s]
, 
all: ∀x:A. B[x]
, 
function: x:A ⟶ B[x]
, 
natural_number: $n
, 
int: ℤ
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
so_lambda: λ2x.t[x]
, 
subtype_rel: A ⊆r B
, 
so_apply: x[s]
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
prop: ℙ
, 
squash: ↓T
, 
true: True
, 
guard: {T}
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
int_seg: {i..j-}
, 
lelt: i ≤ j < k
Lemmas referenced : 
lelt_wf, 
all_wf, 
qle_witness, 
int-subtype-rationals, 
subtract_wf, 
rationals_wf, 
le_int_wf, 
ifthenelse_wf, 
qmul_zero_qrng, 
iff_weakening_equal, 
qsum_wf, 
qsum-const2, 
qle_wf, 
le_wf, 
less_than_wf, 
int_seg_wf, 
qsum-qle
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
sqequalRule, 
lambdaEquality, 
natural_numberEquality, 
hypothesis, 
applyEquality, 
because_Cache, 
independent_isectElimination, 
lambdaFormation, 
imageElimination, 
imageMemberEquality, 
baseClosed, 
equalityTransitivity, 
equalitySymmetry, 
productElimination, 
independent_functionElimination, 
isect_memberEquality, 
functionEquality, 
intEquality, 
dependent_set_memberEquality, 
independent_pairFormation, 
dependent_functionElimination
Latex:
\mforall{}[i,j:\mBbbZ{}].  \mforall{}[f:\{i..j\msupminus{}\}  {}\mrightarrow{}  \mBbbQ{}].    0  \mleq{}  \mSigma{}i  \mleq{}  n  <  j.  f[n]  supposing  \mforall{}n:\{i..j\msupminus{}\}.  (0  \mleq{}  f[n])
Date html generated:
2016_05_15-PM-11_15_48
Last ObjectModification:
2016_01_16-PM-09_18_49
Theory : rationals
Home
Index