Nuprl Lemma : qsum-const2
∀[a,b:ℤ]. ∀[q:ℚ]. (Σa ≤ i < b. q = (if a ≤z b then b - a else 0 fi * q) ∈ ℚ)
Proof
Definitions occuring in Statement :
qsum: Σa ≤ j < b. E[j]
,
qmul: r * s
,
rationals: ℚ
,
le_int: i ≤z j
,
ifthenelse: if b then t else f fi
,
uall: ∀[x:A]. B[x]
,
subtract: n - m
,
natural_number: $n
,
int: ℤ
,
equal: s = t ∈ T
Definitions unfolded in proof :
uall: ∀[x:A]. B[x]
,
member: t ∈ T
,
subtype_rel: A ⊆r B
,
all: ∀x:A. B[x]
,
implies: P
⇒ Q
,
bool: 𝔹
,
unit: Unit
,
it: ⋅
,
btrue: tt
,
uiff: uiff(P;Q)
,
and: P ∧ Q
,
uimplies: b supposing a
,
ifthenelse: if b then t else f fi
,
bfalse: ff
,
guard: {T}
,
prop: ℙ
,
so_lambda: λ2x.t[x]
,
so_apply: x[s]
,
subtract: n - m
,
squash: ↓T
,
nat: ℕ
,
decidable: Dec(P)
,
or: P ∨ Q
,
satisfiable_int_formula: satisfiable_int_formula(fmla)
,
exists: ∃x:A. B[x]
,
false: False
,
not: ¬A
,
top: Top
,
true: True
,
iff: P
⇐⇒ Q
,
qsum: Σa ≤ j < b. E[j]
,
rng_sum: rng_sum,
mon_itop: Π lb ≤ i < ub. E[i]
,
add_grp_of_rng: r↓+gp
,
grp_op: *
,
pi2: snd(t)
,
pi1: fst(t)
,
grp_id: e
,
qrng: <ℚ+*>
,
rng_plus: +r
,
rng_zero: 0
,
itop: Π(op,id) lb ≤ i < ub. E[i]
,
ycomb: Y
,
infix_ap: x f y
Lemmas referenced :
rationals_wf,
le_int_wf,
bool_wf,
equal-wf-base,
int_subtype_base,
assert_wf,
le_wf,
lt_int_wf,
less_than_wf,
bnot_wf,
uiff_transitivity,
eqtt_to_assert,
assert_of_le_int,
eqff_to_assert,
assert_functionality_wrt_uiff,
bnot_of_le_int,
assert_of_lt_int,
equal_wf,
sum_shift_q,
int_seg_wf,
add-inverse,
squash_wf,
true_wf,
qsum-const,
decidable__le,
satisfiable-full-omega-tt,
intformand_wf,
intformnot_wf,
intformle_wf,
itermConstant_wf,
itermAdd_wf,
itermVar_wf,
itermMinus_wf,
int_formula_prop_and_lemma,
int_formula_prop_not_lemma,
int_formula_prop_le_lemma,
int_term_value_constant_lemma,
int_term_value_add_lemma,
int_term_value_var_lemma,
int_term_value_minus_lemma,
int_formula_prop_wf,
iff_weakening_equal,
intformless_wf,
int_formula_prop_less_lemma,
qmul_zero_qrng,
bnot_of_lt_int
Rules used in proof :
sqequalSubstitution,
sqequalTransitivity,
computationStep,
sqequalReflexivity,
isect_memberFormation,
introduction,
cut,
hypothesis,
extract_by_obid,
sqequalRule,
sqequalHypSubstitution,
isect_memberEquality,
isectElimination,
thin,
hypothesisEquality,
axiomEquality,
because_Cache,
intEquality,
baseApply,
closedConclusion,
baseClosed,
applyEquality,
lambdaFormation,
unionElimination,
equalityElimination,
independent_functionElimination,
productElimination,
independent_isectElimination,
equalityTransitivity,
equalitySymmetry,
dependent_functionElimination,
lambdaEquality,
minusEquality,
imageElimination,
universeEquality,
dependent_set_memberEquality,
addEquality,
natural_numberEquality,
dependent_pairFormation,
int_eqEquality,
voidElimination,
voidEquality,
independent_pairFormation,
computeAll,
imageMemberEquality
Latex:
\mforall{}[a,b:\mBbbZ{}]. \mforall{}[q:\mBbbQ{}]. (\mSigma{}a \mleq{} i < b. q = (if a \mleq{}z b then b - a else 0 fi * q))
Date html generated:
2018_05_22-AM-00_02_09
Last ObjectModification:
2017_07_26-PM-06_50_37
Theory : rationals
Home
Index