Nuprl Lemma : qsum-const2

[a,b:ℤ]. ∀[q:ℚ].  a ≤ i < b. (if a ≤then else fi  q) ∈ ℚ)


Proof




Definitions occuring in Statement :  qsum: Σa ≤ j < b. E[j] qmul: s rationals: le_int: i ≤j ifthenelse: if then else fi  uall: [x:A]. B[x] subtract: m natural_number: $n int: equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T subtype_rel: A ⊆B all: x:A. B[x] implies:  Q bool: 𝔹 unit: Unit it: btrue: tt uiff: uiff(P;Q) and: P ∧ Q uimplies: supposing a ifthenelse: if then else fi  bfalse: ff guard: {T} prop: so_lambda: λ2x.t[x] so_apply: x[s] subtract: m squash: T nat: decidable: Dec(P) or: P ∨ Q satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False not: ¬A top: Top true: True iff: ⇐⇒ Q qsum: Σa ≤ j < b. E[j] rng_sum: rng_sum mon_itop: Π lb ≤ i < ub. E[i] add_grp_of_rng: r↓+gp grp_op: * pi2: snd(t) pi1: fst(t) grp_id: e qrng: <ℚ+*> rng_plus: +r rng_zero: 0 itop: Π(op,id) lb ≤ i < ub. E[i] ycomb: Y infix_ap: y
Lemmas referenced :  rationals_wf le_int_wf bool_wf equal-wf-base int_subtype_base assert_wf le_wf lt_int_wf less_than_wf bnot_wf uiff_transitivity eqtt_to_assert assert_of_le_int eqff_to_assert assert_functionality_wrt_uiff bnot_of_le_int assert_of_lt_int equal_wf sum_shift_q int_seg_wf add-inverse squash_wf true_wf qsum-const decidable__le satisfiable-full-omega-tt intformand_wf intformnot_wf intformle_wf itermConstant_wf itermAdd_wf itermVar_wf itermMinus_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_add_lemma int_term_value_var_lemma int_term_value_minus_lemma int_formula_prop_wf iff_weakening_equal intformless_wf int_formula_prop_less_lemma qmul_zero_qrng bnot_of_lt_int
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut hypothesis extract_by_obid sqequalRule sqequalHypSubstitution isect_memberEquality isectElimination thin hypothesisEquality axiomEquality because_Cache intEquality baseApply closedConclusion baseClosed applyEquality lambdaFormation unionElimination equalityElimination independent_functionElimination productElimination independent_isectElimination equalityTransitivity equalitySymmetry dependent_functionElimination lambdaEquality minusEquality imageElimination universeEquality dependent_set_memberEquality addEquality natural_numberEquality dependent_pairFormation int_eqEquality voidElimination voidEquality independent_pairFormation computeAll imageMemberEquality

Latex:
\mforall{}[a,b:\mBbbZ{}].  \mforall{}[q:\mBbbQ{}].    (\mSigma{}a  \mleq{}  i  <  b.  q  =  (if  a  \mleq{}z  b  then  b  -  a  else  0  fi    *  q))



Date html generated: 2018_05_22-AM-00_02_09
Last ObjectModification: 2017_07_26-PM-06_50_37

Theory : rationals


Home Index